Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 May 08 2021 08:35:36
%S 0,0,0,1,0,1,1,1,2,0,1,1,1,2,1,2,1,1,2,2,2,2,3,0,1,1,1,2,1,2,1,1,2,2,
%T 2,2,3,1,2,2,2,3,1,2,1,1,2,2,2,2,3,2,3,2,2,3,2,2,2,3,3,3,3,3,4,0,1,1,
%U 1,2,1,2,1,1,2,2,2,2,3,1,2,2,2,3,1,2,1,1,2,2,2,2,3,2,3,2,2,3,2,2,2,3
%N a(n) = number of double-rises (UU-subsequences) in the n-th Dyck path encoded by A014486(n).
%F a(n) = A014081(A014486(n)).
%F a(n) = A000120(A048735(A014486(n))).
%F a(A125976(n)) = A057514(n)-1, for all n >= 1.
%e A014486(20) = 228 (11100100 in binary), encodes the following Dyck path:
%e /\
%e /..\/\
%e /......\
%e and there is one rising (left-hand side) slope with length 3 and one with length 1, so in the first slope, consisting of 3 U-steps, there are two cases with two consecutive U-steps (overlapping is allowed), thus a(20)=2.
%o (Python)
%o def ok(n):
%o if n==0: return True
%o B=bin(n)[2:] if n!=0 else '0'
%o s=0
%o for b in B:
%o s+=1 if b=='1' else -1
%o if s<0: return False
%o return s==0
%o def a014081(n): return sum(((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1))
%o print([a014081(n) for n in range(4001) if ok(n)]) # _Indranil Ghosh_, Jun 13 2017
%Y Cf. A014081, A014486, A000120, A048735, A125976, A057514.
%K nonn
%O 0,9
%A _Antti Karttunen_, Jan 02 2007