login
a(n) = 5*2^n - 4*n - 5.
2

%I #51 Dec 11 2022 02:14:48

%S 1,7,23,59,135,291,607,1243,2519,5075,10191,20427,40903,81859,163775,

%T 327611,655287,1310643,2621359,5242795,10485671,20971427,41942943,

%U 83885979,167772055,335544211,671088527,1342177163,2684354439

%N a(n) = 5*2^n - 4*n - 5.

%C Row sums of A125233.

%C A triangle with left and right borders being the odd numbers 1,3,5,7,... will give the same partial sums for the sum of its rows. - _J. M. Bergot_, Sep 29 2012

%C The triangle in the above comment is constructed the same way as Pascal's triangle, i.e., C(n, k) = C(n-1, k) + C(n-1, k-1). - _Michael B. Porter_, Oct 03 2012

%H Vincenzo Librandi, <a href="/A126284/b126284.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,2).

%F a(1) = 1; a(2) = 7; a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3), n > 2.

%F The 6th diagonal from the right of A126277.

%F G.f.: x*(1+3*x)/(1-4*x+5*x^2-2*x^3). - _Colin Barker_, Feb 12 2012

%F E.g.f.: 5*exp(2*x) - (5+4*x)*exp(x). - _G. C. Greubel_, Oct 23 2018

%p A126284:=n->5*2^n-4*n-5; seq(A126284(n), n=1..50); # _Wesley Ivan Hurt_, Mar 27 2014

%t CoefficientList[Series[(1 + 3 x)/(1 - 4 x + 5 x^2 - 2 x^3), {x, 0, 50}], x] (* _Vincenzo Librandi_, Mar 28 2014 *)

%o (PARI) a(n)=5<<n-4*n-5 \\ _Charles R Greathouse IV_, Oct 03 2012

%o (Magma) [5*2^n - 4*n - 5: n in [1..30]]; // _G. C. Greubel_, Oct 23 2018

%o (GAP) List([1..30],n->5*2^n-4*n-5); # _Muniru A Asiru_, Oct 24 2018

%Y Cf. A000384, A125233, A126277.

%K nonn,easy

%O 1,2

%A _Gary W. Adamson_, Dec 24 2006

%E More terms from _Vladimir Joseph Stephan Orlovsky_, Oct 18 2008

%E New definition from _R. J. Mathar_, Sep 29 2012