Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jun 16 2021 14:36:23
%S 1,1,1,3,5,7,13,23,43,79,139,257,467,863,1583,2909,5351,9839,18097,
%T 33287,61223,112603,207113,380929,700643,1288657,2370223,4359517,
%U 8018383,14748119,27126019,49892519,91766581,168785119,310444181
%N a(0) = a(1) = a(2) = 1, a(n) = largest prime <= a(n-1) + a(n-2) + a(n-3).
%C Analog of A055500 a(0)=1, a(1)=1, a(n) = largest prime <= a(n-1)+a(n-2). Might be called the Prime-tribonacci sequence. a(n) is asymptotic to c*T^n where T is the tribonacci constant 1.83928675 whose digits are A058265 for a real constant c.
%e a(3) = 3 = a(0)+a(1)+a(2) = 1+1+1 = 3.
%e a(4) = 5 = a(1)+a(2)+a(3) = 1+1+3 = 5.
%e a(5) = 7 < a(2)+a(3)+a(4) = 1+3+5 = 9.
%e a(6) = 13 < a(3)+a(4)+a(5) = 3+5+7 = 15.
%e a(7) = 23 < a(4)+a(5)+a(6) = 5+7+13 = 25.
%e a(8) = 43 = a(5)+a(6)+a(7) = 7+13+23 = 43.
%e a(9) = 79 = a(6)+a(7)+a(8) = 13+23+43 = 79.
%e a(10) = 139 < a(7)+a(8)+a(9) = 23+43+79 = 145.
%p a[0]:=1:a[1]:=1:a[2]:=1:for n from 3 to 40 do a[n]:=prevprime(1+a[n-1]+a[n-2]+a[n-3]) od: seq(a[n],n=0..40); # _Emeric Deutsch_, Mar 24 2007
%Y Cf. A000040, A000073, A055500, A058265.
%K easy,nonn
%O 0,4
%A _Jonathan Vos Post_, Mar 09 2007
%E More terms from _Emeric Deutsch_, Mar 24 2007
%E Offset corrected by _N. J. A. Sloane_, Jun 16 2021