login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

List of primes generated by factoring successive integers in Sylvester's sequence (A000058).
7

%I #60 Sep 09 2024 16:07:31

%S 2,3,7,43,13,139,3263443,547,607,1033,31051,29881,67003,9119521,

%T 6212157481,5295435634831,31401519357481261,77366930214021991992277,

%U 181,1987,112374829138729,114152531605972711,35874380272246624152764569191134894955972560447869169859142453622851

%N List of primes generated by factoring successive integers in Sylvester's sequence (A000058).

%C The list is infinite and no term repeats since Sylvester's sequence is an infinite coprime sequence.

%C However, it appears to be unknown whether all terms in A000058 are squarefree. - _Jeppe Stig Nielsen_, Apr 23 2020

%D Barry Mazur and William Stein, Prime Numbers and the Riemann Hypothesis, Cambridge University Press, 2016. See p. 9.

%H Ray Chandler, <a href="/A126263/b126263.txt">Table of n, a(n) for n = 1..28</a> (first 27 terms from William Stein)

%H J. K. Andersen, <a href="http://primerecords.dk/sylvester-factors.htm">Factorization of Sylvester's sequence</a>.

%H Filip Saidak, <a href="https://t5k.org/notes/proofs/infinite/Saidak.html">Proof of Euclid's Theorem</a>.

%H Filip Saidak, <a href="http://www.jstor.org/stable/27642094">A New Proof of Euclid's Theorem</a>, Amer. Math. Monthly, Dec. 2006.

%e 2 = 2, 3 = 3, 7 = 7, 43 = 43, 1807 = 13 * 139, 3263443 = 3263443,

%e 10650056950807 = 547 * 607 * 1033 * 31051,

%e 113423713055421844361000443 = 29881 * 67003 * 9119521 * 6212157481,

%e 12864938683278671740537145998360961546653259485195807 = 5295435634831 * 31401519357481261 * 77366930214021991992277.

%e 165506647324519964198468195444439180017513152706377497841851388766535868639572406808911988131737645185443 = 181 * 1987 * 112374829138729 * 114152531605972711 * 35874380272246624152764569191134894955972560447869169859142453622851. - _Jonathan Sondow_, Jan 26 2014

%p a(0):=2; for n from 0 to 8 do a(n+1):=a(n)^2-a(n)+1;ifactor(%); od;

%t Flatten[FactorInteger[NestList[#^2 - # + 1 &, 2, 8]][[All, All, 1]]] (* _Paolo Xausa_, Sep 09 2024 *)

%o (Sage)

%o v = [2]

%o for n in range(12):

%o v.append(v[-1]^2-v[-1]+1)

%o print(prime_divisors(v[-1])) # William Stein, Aug 26 2009

%o (PARI)

%o v=[2]; for(i=1,10, v=concat(v,Set(factor(vecprod(v)+1)[,1]))); v \\ _Charles R Greathouse IV_, Oct 02 2014

%Y Cf. A000058, A007996, A236433.

%K nonn

%O 1,1

%A Howard L. Warth (hlw6c2(AT)umr.edu), Dec 22 2006

%E Offset corrected by _N. J. A. Sloane_, Aug 20 2009

%E a(23)-a(27) from William Stein (wstein(AT)gmail.com), Aug 20 2009, Aug 21 2009

%E a(17) corrected by _D. S. McNeil_, Dec 10 2010

%E b-file updated at the suggestion of _Hans Havermann_ by _Ray Chandler_, Feb 27 2015