login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let P be Pascal's triangle A007318 and let N be Narayana's triangle A001263, both regarded as lower triangular matrices. Sequence gives triangle obtained from P*N, read by rows.
4

%I #37 Dec 13 2015 16:07:42

%S 1,2,1,4,5,1,8,18,9,1,16,56,50,14,1,32,160,220,110,20,1,64,432,840,

%T 645,210,27,1,128,1120,2912,3150,1575,364,35,1,256,2816,9408,13552,

%U 9534,3388,588,44,1,512,6912,28800,53088,49644,24822,6636,900,54,1

%N Let P be Pascal's triangle A007318 and let N be Narayana's triangle A001263, both regarded as lower triangular matrices. Sequence gives triangle obtained from P*N, read by rows.

%C Also T(n,k) is number of hex trees with n edges and k left edges (0<=k<=n). A hex tree is a rooted tree where each vertex has 0, 1, or 2 children and, when only one child is present, it is either a left child, or a median child, or a right child (name due to an obvious bijection with certain tree-like polyhexes; see the Harary-Read reference). Accordingly, one can have left, vertical, or right edges.

%C Also (with a different offset) T(n,k) is the number of skew Dyck paths of semilength n and having k peaks (1<=k<=n). A skew Dyck path is a path in the first quadrant which begins at the origin, ends on the x-axis, consists of steps U=(1,1)(up), D=(1,-1)(down) and L=(-1,-1)(left) so that up and left steps do not overlap. The length of the path is defined to be the number of its steps. E.g., T(3,2)=5 because we have (UD)U(UD)D, (UD)U(UD)L, U(UD)D(UD), U(UD)(UD)D and U(UD)(UD)L (the peaks are shown between parentheses).

%C Sum of terms in row n = A002212(n+1). T(n,1) = A001793(n); T(n,2) = A006974(n-2); Sum_{k=0..n}kT(n,k) = A026379(n+1).

%C A126216 = N * P. - _Gary W. Adamson_, Nov 30 2007

%H E. Deutsch, E. Munarini, S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.jspi.2010.01.015">Skew Dyck paths</a>, J. Stat. Plann. Infer. 140 (8) (2010) 2191-2203.

%H M. Dziemianczuk, <a href="http://dx.doi.org/10.1016/j.disc.2014.07.024">Enumerations of plane trees with multiple edges and Raney lattice paths</a>, Discrete Mathematics 337 (2014): 9-24.

%H F. Harary and R. C. Read, <a href="http://dx.doi.org/10.1017/S0013091500009135">The enumeration of tree-like polyhexes</a>, Proc. Edinburgh Math. Soc. (2) 17 (1970), 1-13.

%F T(n,k) = (1/(n+1))*binomial(n+1,k)*Sum_{j=n-2k..n-k}2^j*binomial(k,n-k-j)*binomial(n+1-k,j) if 0 < k <= n; T(n,0) = 2^n.

%F G.f. G=G(t,z) satisfies G = 1 + (t+2)*z*G + t*z^2*G^2.

%F E.g.f.: exp((t+2)*x)*BesselI_{1}(2*sqrt(t)*x)/(sqrt(t)*x). - _Peter Luschny_, Oct 29 2014

%F G.f.: N(x/(1-x),y)-1)/x, where N(x,y) is the g.f. of Narayana's triangle A001263. - _Vladimir Kruchinin_, Apr 06 2015.

%e The triangle P begins

%e 1,

%e 1, 1

%e 1, 2, 1

%e 1, 3, 3, 1, ...

%e and T begins

%e 1,

%e 1, 1,

%e 1, 3, 1,

%e 1, 6, 6, 1,

%e 1, 10, 20, 10, 1, ...

%e The product P*T gives

%e 1,

%e 2, 1,

%e 4, 5, 1,

%e 8, 18, 9, 1,

%e 16, 56, 50, 14, 1, ...

%p T:=proc(n,k) if k=0 then 2^n elif k<=n then binomial(n+1,k)*sum(binomial(k,n-k-j)*binomial(n+1-k,j)*2^j,j=n-2*k..n-k)/(n+1) else 0 fi end: for n from 0 to 10 do seq(T(n,k),k=0..n) od; # yields sequence in triangular form

%t t[n_, 0] := 2^n; t[n_, k_] := Binomial[n+1, k]*Sum[Binomial[k, n-k-j]*Binomial[n+1-k, j]*2^j, {j, n-2*k, n-k}]/(n+1); Table[t[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jun 12 2013 *)

%t nmax = 10; n[x_, y_] := (1-x*(1+y) - Sqrt[(1-x*(1+y))^2 - 4*y*x^2])/(2*x); s = Series[(n[x/(1-x), y]-1)/x, {x, 0, nmax+1}, {y, 0, nmax+1}];t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {y, 0, k}]; Table[t[n, k], {n, 0, nmax}, {k, 1, n+1}] // Flatten (* _Jean-François Alcover_, Apr 16 2015, after _Vladimir Kruchinin_ *)

%o (PARI) tabl(nn) = {mP = matrix(nn, nn, n, k, binomial(n-1, k-1)); mN = matrix(nn, nn, n, k, binomial(n-1, k-1) * binomial(n, k-1) / k); mprod = mP*mN; for (n=1, nn, for (k=1, n, print1(mprod[n, k], ", ");); print(););} \\ _Michel Marcus_, Apr 16 2015

%Y Cf. A001263, A007318, A002212, A001793, A006974, A026379.

%Y Cf. A128718, A026378, A126216.

%K nonn,tabl,nice

%O 0,2

%A _Emeric Deutsch_, Dec 19 2006, Mar 30 2007

%E New definition in terms of P and N from _Philippe Deléham_, Jun 30 2007

%E Edited by _N. J. A. Sloane_, Jul 22 2007