Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 May 30 2015 07:42:43
%S 1,4,36,744,28536,1736064,152914176,18372559104,2885671339776,
%T 573765893121024,140835811776316416,41820352964911908864,
%U 14774712204104658671616,6124078747943873540112384
%N Main diagonal of symmetric triangle A126150: a(n) = A126150(n,n).
%H Vaclav Kotesovec, <a href="/A126152/b126152.txt">Table of n, a(n) for n = 0..232</a>
%F a(n) = Sum_{k, 0<=k<=n} A130847(n,k)*3^k. - _Philippe Deléham_, Jul 22 2007
%F G.f.: 1/(1 - 4*x/(1-5*x/(1 - 21*x/(1-22*x/(1 - 50*x/(1-51*x/(1 - 91*x/(1-92*x/(1 -...)))))))))))), a continued fraction involving even-indexed pentagonal numbers A000326. - _Paul D. Hanna_, Feb 15 2012
%F a(n) ~ Gamma(1/3) * 2^(3*n+7/3) * 3^(n+3/2) * n^(2*n+7/6) / (exp(2*n) * Pi^(2*n+13/6)). - _Vaclav Kotesovec_, May 30 2015
%o (PARI) /* Continued fraction involving even-indexed pentagonal numbers: */
%o {a(n)=local(CF=1+x*O(x),m,P); for(k=1, n,m=2*((n-k)\2+1);P=m*(3*m-1)/2-((n-k+1)%2); CF=1/(1-P*x*CF)); polcoeff(CF, n, x)}
%o for(n=0,20,print1(a(n),","))
%Y Cf. A126150; A126151 (column 0), A126153 (diagonal).
%K nonn
%O 0,2
%A _Paul D. Hanna_, Dec 19 2006