login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126112
Prime numbers p such that p^4 + (p-1)^4 + (p+1)^4 is a prime number.
2
3, 7, 11, 29, 31, 53, 59, 83, 109, 127, 283, 349, 461, 521, 599, 643, 683, 787, 809, 829, 907, 911, 937, 983, 1093, 1117, 1201, 1289, 1301, 1487, 1523, 1613, 1721, 1877, 2017, 2153, 2267, 2281, 2423, 2521, 2579, 2657, 2677, 2699, 2731, 2741, 2797, 2887, 2969
OFFSET
1,1
LINKS
EXAMPLE
(3-1)^4 + 3^4 + (3+1)^4 = 2^4 + 3^4 + 4^4 = 16 + 81 + 256 = 353 is prime, hence 3 is a term.
(11-1)^4 + 11^4 + (11+1)^4 = 10^4 + 11^4 + 12^4 = 10000 + 14641 + 20736 = 45377 is prime, hence 11 is a term.
MATHEMATICA
f[n_]:=PrimeQ[(n-1)^4+n^4+(n+1)^4]; lst={}; Do[p=Prime[n]; If[f[p], AppendTo[lst, p]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Oct 27 2009 *)
Select[Prime[Range[500]], PrimeQ[Total[(#+{-1, 0, 1})^4]]&] (* Harvey P. Dale, Dec 07 2012 *)
PROG
(PARI) forprime(p=2, 3000, if(isprime(q=(p-1)^4+p^4+(p+1)^4), print1(p, ", "))) /* Klaus Brockhaus, Mar 09 2007 */
CROSSREFS
KEYWORD
nonn
AUTHOR
Tomas Xordan, Mar 05 2007
EXTENSIONS
Edited, corrected and extended by Klaus Brockhaus, Mar 09 2007
STATUS
approved