Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Oct 30 2017 22:39:10
%S 0,1,2,2,4,3,6,4,6,5,10,6,12,7,6,8,16,9,18,10,8,11,22,12,20,13,18,14,
%T 28,7,30,16,12,17,10,18,36,19,14,20,40,9,42,22,18,23,46,24,42,25,18,
%U 26,52,27,14,28,20,29,58,14,60,31,24,32,16,13,66,34,24,11,70,36,72,37,30,38
%N a(n) = number of positive integers < n that are coprime to exactly one prime divisor of n.
%H Michael De Vlieger, <a href="/A126080/b126080.txt">Table of n, a(n) for n = 1..10000</a>
%F a(p) = p - 1.
%e Concerning a(12): 1,5,7,11 are coprime to each prime dividing 12; so these integers are not counted. 6 is coprime to 0 primes dividing 12; so this integer is not counted. But the 6 integers 2,3,4,8,9,10 are each coprime to exactly one prime dividing 12; so a(12) = 6.
%e Concerning a(30): Only the 7 integers 6,10,12,15,18,20,24 are each coprime to exactly one prime dividing 30. So a(30) = 7.
%p A126080 := proc(n) local divs,pdivs,a,i,pcnt,p; divs := numtheory[divisors](n); pdivs := []; for i from 1 to nops(divs) do if isprime(op(i,divs)) then pdivs := [op(pdivs),op(i,divs)]; fi; od; a := 0; for i from 1 to n-1 do pcnt := 0; for p from 1 to nops(pdivs) do if gcd(i,op(p,pdivs)) = 1 then pcnt := pcnt+1; fi; od; if pcnt = 1 then a := a+1; fi; od; RETURN(a); end: for n from 1 to 90 do printf("%d, ",A126080(n)); od; # _R. J. Mathar_, Mar 14 2007
%t Table[Count[Range[n - 1], k_ /; Total@ Boole@ Map[CoprimeQ[k, #] &, #] == 1] &[FactorInteger[n][[All, 1]]], {n, 76}] (* _Michael De Vlieger_, Sep 19 2017 *)
%o (PARI) a(n) = my(f=factor(n)); #select(x->(x==1), vector(n-1, j, sum(k=1, #f~, gcd(j, f[k,1]) == 1))); \\ _Michel Marcus_, Oct 25 2017
%Y Cf. A128487, A128488.
%K nonn
%O 1,3
%A _Leroy Quet_, Mar 02 2007
%E More terms from _R. J. Mathar_, Mar 14 2007