login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Signature-permutation of the inverse of Vaillé's 1997 bijection on Dyck paths.
10

%I #8 Mar 22 2016 04:55:26

%S 0,1,3,2,8,6,7,5,4,22,19,20,15,14,21,17,18,13,11,16,12,10,9,64,60,61,

%T 52,51,62,54,55,41,39,53,40,38,37,63,57,58,46,44,59,49,50,36,33,47,34,

%U 29,28,56,45,48,35,31,43,32,27,25,42,30,26,24,23,196,191,192,178,177

%N Signature-permutation of the inverse of Vaillé's 1997 bijection on Dyck paths.

%H A. Karttunen, <a href="/A125986/b125986.txt">Table of n, a(n) for n = 0..2055</a>

%H J. Vaillé, <a href="http://dx.doi.org/10.1006/eujc.1996.0089">Une Bijection Explicative de Plusieurs Propriétés Remarquables des Ponts</a>, European J. Combin. 18 (1997), no. 1, 117-124.

%H <a href="/index/Per#IntegerPermutationCatAuto">Index entries for signature-permutations of Catalan automorphisms</a>

%o (MIT Scheme:) (define (A125986 n) (let ((z (reduce append! '() (reverse! (descending-list->bin-lists (binexp->A071158-list (A014486 n)))))) (tl (A057515 n))) (A080300 (/ (+ (<< (- (<< 1 tl) 1) (+ (length z) 1)) (binlist->n z)) 2))))

%o (define (descending-list->bin-lists rl) (let loop ((z (list)) (m 1)) (let ((sl (map (lambda (n) (- n m)) (keep-matching-items rl (lambda (n) (or (= n m) (= n (+ 1 m)))))))) (cond ((null? sl) z) (else (loop (cons sl z) (+ m 1)))))))

%o (define (binlist->n binlist) (let loop ((s 0) (bl binlist)) (if (null? bl) s (loop (+ s s (car bl)) (cdr bl)))))

%o (define (binexp->A071158-list n) (let loop ((n n) (lista (list)) (h 1)) (cond ((zero? n) lista) ((odd? n) (loop (/ (- n 1) 2) lista (- h 1))) (else (loop (/ n 2) (cons h lista) (1+ h))))))

%o (define (>> n i) (if (zero? i) n (>> (floor->exact (/ n 2)) (- i 1))))

%o (define (<< n i) (if (<= i 0) (>> n (- i)) (<< (+ n n) (- i 1))))

%Y Inverse: A125985. Cf. A057515, A071158. Algorithm is partially described in A126301.

%K nonn

%O 0,3

%A _Antti Karttunen_, Jan 02 2007