|
|
A125900
|
|
Triangle of the numerators of the almost-harmonic numbers: n-th term in m-th row is numerator of (sum{k=1 to m} 1/k) - 1/n, 1<=n<=m.
|
|
1
|
|
|
0, 1, 1, 5, 4, 3, 13, 19, 7, 11, 77, 107, 39, 61, 25, 29, 39, 127, 11, 9, 137, 223, 293, 949, 82, 67, 1019, 49, 481, 621, 2003, 691, 141, 2143, 103, 363, 4609, 5869, 6289, 6499, 1325, 6709, 967, 3407, 761, 4861, 6121, 6541, 6751, 6877, 6961, 1003, 3533, 789
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
LINKS
|
Table of n, a(n) for n=1..54.
|
|
EXAMPLE
|
Triangle of almost-harmonic numbers begins:
0
1/2,1
5/6,4/3,3/2
13/12,19/12,7/4,11/6
77/60,107/60,39/20,61/30,25/12
|
|
MATHEMATICA
|
t[m_, n_] := Sum[1/k, {k, m}] - 1/n; Numerator @ Flatten @ Table[t[m, n], {m, 10}, {n, m}] (* Ray Chandler, Dec 14 2006 *)
|
|
CROSSREFS
|
Cf. A125901.
Sequence in context: A086793 A070515 A096733 * A019102 A019179 A206568
Adjacent sequences: A125897 A125898 A125899 * A125901 A125902 A125903
|
|
KEYWORD
|
frac,nonn,tabl
|
|
AUTHOR
|
Leroy Quet, Dec 13 2006
|
|
EXTENSIONS
|
Extended by Ray Chandler, Dec 14 2006
|
|
STATUS
|
approved
|
|
|
|