Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Jun 14 2017 00:19:28
%S 1,1,2,9,103,3276,307867,89520089,83657942588,258923776689771,
%T 2717711483011792407,98702105953049319472394,
%U 12629828399521800714941435773,5784963467206342855747483263957541
%N q-Bell numbers for q=5; eigensequence of A022169, which is the triangle of Gaussian binomial coefficients [n,k] for q=5.
%F a(n) = Sum_{k=0..n-1} A022169(n-1,k) * a(k) for n>0, with a(0)=1.
%e The recurrence: a(n) = Sum_{k=0..n-1} A022169(n-1,k) * a(k)
%e is illustrated by:
%e a(2) = 1*(1) + 6*(1) + 1*(2) = 9;
%e a(3) = 1*(1) + 31*(1) + 31*(2) + 1*(9) = 103;
%e a(4) = 1*(1) + 156*(1) + 806*(2) + 156*(9) + 1*(103) = 3276.
%e Triangle A022169 begins:
%e 1;
%e 1, 1;
%e 1, 6, 1;
%e 1, 31, 31, 1;
%e 1, 156, 806, 156, 1;
%e 1, 781, 20306, 20306, 781, 1;
%e 1, 3906, 508431, 2558556, 508431, 3906, 1; ...
%o (PARI) /* q-Binomial coefficients: */ {C_q(n,k)=if(n<k || k<0,0,if(n==0 || k==0,1,prod(j=n-k+1,n,1-q^j)/prod(j=1,k,1-q^j)))} /* q-Bell numbers = eigensequence of q-binomial triangle: */ {B_q(n)=if(n==0,1,sum(k=0,n-1,B_q(k)*C_q(n-1,k)))} /* Eigensequence at q=5: */ {a(n)=subst(B_q(n),q,5)}
%Y Cf. A022169, A125810, A125811, A125812, A125813, A125814.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Dec 10 2006