login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Consider the array T(n, m) = m-th prime of the form n*i(i+1)/2 +- 1. This sequence is read by antidiagonals.
7

%I #16 Dec 29 2023 11:51:30

%S 2,3,5,2,5,7,3,17,7,11,29,5,19,11,29,5,31,11,29,13,37,41,7,139,13,31,

%T 19,67,7,43,17,179,23,83,29,79,53,23,71,19,181,41,107,31,137,11,89,47,

%U 197,37,331,59,109,41,191,67,29,251,79,251,59,389,61,197,43,211,11,109,31

%N Consider the array T(n, m) = m-th prime of the form n*i(i+1)/2 +- 1. This sequence is read by antidiagonals.

%C T(n, m) is the m-th prime in order which is n times some triangular number plus or minus 1.

%C Eventually all primes, p, appear since (p +-1) times 1(1+1)/2 equals (p +- 1).

%e 1 | 2, 5, 7, 11, 29, 37, 67, 79, 137, 191, 211, 277, 379, 631, 821, ...

%e 2 | 3, 5, 7, 11, 13, 19, 29, 31, 41, 43, 71, 73, 89, 109, 131, ...

%e 3 | 2, 17, 19, 29, 31, 83, 107, 109, 197, 199, 233, 359, 409, 569, 571, ...

%e 4 | 3, 5, 11, 13, 23, 41, 59, 61, 83, 113, 179, 181, 263, 311, 313, ...

%e 5 | 29, 31, 139, 179, 181, 331, 389, 599, 601, 1049, 1051, 1381, 1499, 1889, 2029, ...

%e 6 | 5, 7, 17, 19, 37, 59, 61, 89, 127, 167, 269, 271, 331, 397, 467, ...

%e 7 | 41, 43, 71, 197, 251, 461, 463, 547, 839, 953, 1471, 1931, 1933, 2099, 2647, ...

%e 8 | 7, 23, 47, 79, 167, 223, 359, 439, 727, 839, 1087, 1223, 1367, 1847, 2207, ...

%e 9 | 53, 89, 251, 593, 701, 1223, 1709, 1889, 2699, 4463, 4751, 5669, 7019, 8513,10151, ...

%e 10 | 11, 29, 31, 59, 61, 101, 149, 151, 211, 281, 359, 449, 659, 661, 911, ...

%e 11 | 67, 109, 307, 397, 727, 857, 859, 1319, 1321, 2089, 2309, 2311, 3037, 3299, 3301, ...

%t T[n_, m_] := Block[{c = 0, k = 1, s = {}, trnglr}, While[c < m + 1, trnglr = n*k(k + 1)/2; If[ PrimeQ[trnglr - 1], c++; AppendTo[s, trnglr - 1]]; If[PrimeQ[trnglr + 1], c++; AppendTo[s, trnglr + 1]]; k++; s = Union@s]; s[[m]] ]; Table[ T[n - m + 1, m], {n, 12}, {m, n}] // Flatten

%Y Cf. A000217, A124110, A125765, A125767, A125768, A125769.

%K nonn,tabl

%O 1,1

%A _Jonathan Vos Post_ & _Robert G. Wilson v_, Dec 01 2006