login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A125752 Moessner triangle using the Fibonacci terms. 3
1, 1, 2, 4, 9, 8, 26, 69, 77, 55, 261, 806, 1088, 920, 610, 4062, 14362, 22887, 22856, 17034, 10946, 98912, 395253, 728605, 847832, 721756, 502606, 317811, 3809193, 17008391, 35644614, 47557978, 46166656, 35655012, 23828383, 14930352 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
A Moessner triangle is generated with the recurrence described in A125714, starting from a first row M(1,c) filled with the Fibonacci numbers M(1,c) = A000045(c), c >= 1.
Subsequent rows n are generated from the numbers in their previous rows with the rule:
Mark/circle all elements M(n-1, A000217(t)) of the previous row n-1, t >= 1.
Define the elements M(n,.) as the partial sums of the M(n-1,.) that have not been marked:
M(n,c) = Sum_{j=1..c} M(n-1,A014132(j)), c >= 1. The T(n,m) are then defined by reading the marked/circled terms "along antidiagonals": T(n,m) = M(n+m-1, A000217(m)), n >= 1, 1 <= m <= n.
REFERENCES
J. H. Conway and R. K. Guy, "The Book of Numbers", Springer-Verlag, 1996, p. 64.
LINKS
G. S. Kazandzidis, On a conjecture of Moessner and a general problem, Bull. Soc. Math. Grèce (N.S.) 2 (1961), 23-30.
Dexter Kozen and Alexandra Silva, On Moessner's theorem, Amer. Math. Monthly 120(2) (2013), 131-139.
R. Krebbers, L. Parlant, and A. Silva, Moessner's theorem: an exercise in coinductive reasoning in Coq, Theory and practice of formal methods, 309-324, Lecture Notes in Comput. Sci., 9660, Springer, 2016.
Calvin T. Long, Strike it out--add it up, Math. Gaz. 66 (438) (1982), 273-277.
Alfred Moessner, Eine Bemerkung über die Potenzen der natürlichen Zahlen, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 29, 1951.
Ivan Paasche, Ein neuer Beweis des Moessnerschen Satzes S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1952 (1952), 1-5 (1953). [Two years are listed at the beginning of the journal issue.]
Ivan Paasche, Beweis des Moessnerschen Satzes mittels linearer Transformationen, Arch. Math. (Basel) 6 (1955), 194-199.
Ivan Paasche, Eine Verallgemeinerung des Moessnerschen Satzes, Compositio Math. 12 (1956), 263-270.
Hans Salié, Bemerkung zu einem Satz von A. Moessner, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss. 1952 (1952), 7-11 (1953). [Two years are listed at the beginning of the journal issue.]
Oskar Perron, Beweis des Moessnerschen Satzes, S.-B. Math.-Nat. Kl. Bayer. Akad. Wiss., 31-34, 1951.
FORMULA
T(n,n) = A081667(n-1).
EXAMPLE
The upper left corner of the array M(n,c) is
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, ...
1, 4, 9, 22, 43, 77, 166, 310, 543, 920, 1907, 3504, 6088, 10269, 17034, ...
4, 26, 69, 235, 545, 1088, 2995, 6499, 12587, 22856, 57601, 121003, 230773, ...
26, 261, 806, 3801, 10300, 22887, 80488, 201491, 432264, 847832, 2586423, ...
261, 4062, 14362, 94850, 296341, 728605, 3315028, 9488917, 22445416, ...
4062, 98912, 395253, 3710281, 13199198, 35644614, 213010460, 690899755, ...
and dropping the columns with column numbers in A014132, reading the remaining array by antidiagonals leads to the final triangle T(n,m):
1;
1, 2;
4, 9, 8;
26, 69, 77, 55;
261, 806, 1088, 920, 610;
...
CROSSREFS
Sequence in context: A131094 A129598 A256017 * A103147 A340169 A079781
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Dec 06 2006
EXTENSIONS
More terms from Joshua Zucker, Jun 17 2007
Description of starting row corrected, comments detailed with formulas by R. J. Mathar, Sep 17 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 18 18:59 EDT 2024. Contains 374388 sequences. (Running on oeis4.)