Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Sep 21 2017 03:24:48
%S 1,2,3,5,8,13,23,46,123
%N Minimal number of initial pieces needed to reach level n in the Solitaire Army game when diagonal jumps are allowed.
%C Note that the first six terms are Fibonacci numbers.
%D E. R. Berlekamp, J. H. Conway and R. K. Guy, Winning Ways, Academic Press, NY, 2 vols., 1982, see p. 715.
%H M. Aigner, <a href="http://www.jstor.org/stable/2691046">Moving into the desert with Fibonacci</a>, Mathematics Magazine, 70 (1997), 11-21.
%H G. I. Bell, <a href="http://www.gibell.net/pegsolitaire/army/index.html">The peg solitaire army</a>.
%H G. I. Bell, D. S. Hirschberg and P. Guerrero-Garcia, <a href="https://arxiv.org/abs/math/0612612">The minimum size required of a solitaire army</a>, arXiv:math/0612612 [math.CO], 2006-2007.
%H N. Eriksen, H. Eriksson and K. Eriksson, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v7i1r3">Diagonal checker-jumping and Eulerian numbers for color-signed permutations</a>, Electron. J. Combin., 7 (2000), #R3.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ConwaysSoldiers.html">Conway's Soldiers</a>.
%F It is easy to show that a(n) >= a(n-1)+a(n-2). However, finding the last 3 terms in this sequence is not easy.
%e a(1)=2 because it takes 2 men to go one step or level forward.
%Y Cf. A014225, A014227.
%K fini,full,nonn
%O 0,2
%A George I. Bell (gibell(AT)comcast.net), Feb 02 2007