login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n)=2*n!/d(n!); d(m)=A000005(m) is the number of divisors of m.
0

%I #11 Jun 01 2014 07:54:11

%S 2,2,2,3,6,15,48,168,840,4536,26880,147840,1209600,7862400,67267200,

%T 648648000,7783776000,66162096000,871782912000,8281937664000,

%U 118562476032000,1680623097753600,23416681828700160,269291841030051840,5109094217170944000

%N a(n)=2*n!/d(n!); d(m)=A000005(m) is the number of divisors of m.

%C a(3)=3 and a(5)=15 are the only odd numbers in this sequence.

%D P. Erdos, solved by J. Fiedler, Elem. Math. 16 (1961), 42-44, Aufgabe 374.

%F a(n)=2*A000142(n)/A027423(n).

%e a(4)=2*4!/d(4!)=2*24/8=6.

%t Table[(2n!)/DivisorSigma[0,n!],{n,0,25}] (* _Harvey P. Dale_, Jun 01 2014 *)

%o (PARI) a(n) = 2*n!/numdiv(n!); \\ _Michel Marcus_, Aug 26 2013

%Y Cf. A000142, A027423.

%K nonn

%O 0,1

%A _Franz Vrabec_, Feb 01 2007

%E More terms from _Michel Marcus_, Aug 26 2013