login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0)=0; thereafter a(n) = the smallest nonnegative integer not already in the sequence such that a(n-1) is congruent to a(n) (mod n).
13

%I #72 May 01 2024 19:28:55

%S 0,1,3,6,2,7,13,20,4,22,12,23,11,24,10,25,9,26,8,27,47,5,49,72,48,73,

%T 21,75,19,77,17,79,15,81,115,45,117,43,119,41,121,39,123,37,125,35,

%U 127,33,129,31,131,29,133,80,134,189,245,74,16,193,253,70,132,69,197,67,199,65

%N a(0)=0; thereafter a(n) = the smallest nonnegative integer not already in the sequence such that a(n-1) is congruent to a(n) (mod n).

%C This sequence seems likely to be a permutation of the nonnegative integers.

%C A245340(n) = smallest m such that a(m) = n, or -1 if n never appears.

%C See A245394 and A245395 for record values of a(n) and where they occur. - _Reinhard Zumkeller_, Jul 21 2014

%C See A370956 and A370959 for record values of the inverse A245340 and where they occur. - _N. J. A. Sloane_, Apr 29 2024

%C A very nice (maybe the most natural) variant of Recamán's sequence A005132. - _M. F. Hasler_, Nov 03 2014

%H Reinhard Zumkeller, <a href="/A125717/b125717.txt">Table of n, a(n) for n = 0..100000</a> (first 10000 terms from Ferenc Adorján)

%H Ferenc Adorján, <a href="https://web.archive.org/web/20210629063154/http://web.t-online.hu/fadorjan/l_quet.pdf">Some characteristics of Leroy Quet's permutation sequences</a>

%H N. J. A. Sloane, <a href="/A125717/a125717.jpg">Log-log plot of A370956 vs A370959</a> (shows terms in A125717 that take the longest to appear).

%H <a href="/index/Rea#Recaman">Index entries for sequences related to Recamán's sequence</a>

%H <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>

%t f[l_List] := Block[{n = Length[l], k = Mod[l[[ -1]], n]},While[MemberQ[l, k], k += n];Append[l, k]];Nest[f, {0}, 70] (* _Ray Chandler_, Feb 04 2007, updated for change to offset Oct 10 2019 *)

%o (PARI) {Quet_p2(n)=/* Permutation sequence a'la _Leroy Quet_, A125717 */local(x=[1],k=0,w=1); for(i=2,n,if((k=x[i-1]%i)==0,k=i);while(bittest(w,k-1)>0,k+=i);x=concat(x,k);w+=2^(k-1)); return(x)} [Ferenc Adorjan]

%o (Haskell)

%o import Data.IntMap (singleton, member, (!), insert)

%o a125717 n = a125717_list !! n

%o a125717_list = 0 : f [1..] 0 (singleton 0 0) where

%o f (v:vs) w m = g (reverse[w-v,w-2*v..1] ++ [w+v,w+2*v..]) where

%o g (x:xs) = if x `member` m then g xs else x : f vs x (insert x v m)

%o -- _Reinhard Zumkeller_, Jul 21 2014

%o (PARI) A125717(n,show=0)={my(u=1,a);for(n=1,n,a%=n;while(bittest(u,a),a+=n);u+=1<<a;show&&print1(a","));a} \\ _M. F. Hasler_, Nov 03 2014

%o (Python)

%o from itertools import count, islice

%o def agen(): # generator of terms

%o an, aset = 0, {0}

%o for n in count(1):

%o yield an

%o an = next(m for m in count(an%n, n) if m not in aset)

%o aset.add(an)

%o print(list(islice(agen(), 70))) # _Michael S. Branicky_, Jun 07 2023

%Y Cf. A245340 (inverse), A370957 (first differences), A245394 & A245395 (records in this sequence), A370956 & A370959 (records in inverse).

%Y See also A005132 (Recaman), A099506, A125715, A125718, A125725.

%K nonn,nice,look

%O 0,3

%A _Leroy Quet_, Feb 01 2007

%E Extended by _Ray Chandler_, Feb 04 2007

%E a(0) added by _Franklin T. Adams-Watters_, Mar 31 2014

%E Edited by _N. J. A. Sloane_, Mar 15 2024