login
Expansion of 1/(1 - x - 3x^2 + x^3).
5

%I #19 Feb 01 2021 00:14:58

%S 1,1,4,6,17,31,76,152,349,729,1624,3462,7605,16367,35720,77216,168009,

%T 363937,790748,1714550,3722857,8075759,17529780,38034200,82547781,

%U 179120601,388729744,843543766,1830612397,3972513951,8620807376,18707736832,40597645009,88100048129

%N Expansion of 1/(1 - x - 3x^2 + x^3).

%C Antidiagonal sums of number triangle A125690.

%H Indranil Ghosh, <a href="/A125691/b125691.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,3,-1).

%t CoefficientList[Series[1/(1 - x - 3x^2 + x^3), {x, 0, 28}], x] (* _Indranil Ghosh_, Mar 10 2017 *)

%t LinearRecurrence[{1,3,-1},{1,1,4},40] (* _Harvey P. Dale_, Jul 13 2019 *)

%o (PARI) Vec(1/(1 - x - 3*x^2 + x^3) + O(x^29)) \\ _Indranil Ghosh_, Mar 10 2017

%Y Cf. A125690.

%K easy,nonn

%O 0,3

%A _Paul Barry_, Nov 30 2006