login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T, read by rows, where column k equals the eigensequence of matrix power T^k.
7

%I #6 Jun 14 2017 00:14:54

%S 1,1,1,1,1,1,1,2,1,1,1,4,3,1,1,1,9,8,4,1,1,1,24,24,13,5,1,1,1,75,84,

%T 47,19,6,1,1,1,269,335,195,79,26,7,1,1,1,1091,1495,908,372,121,34,8,1,

%U 1,1,4940,7381,4674,1947,631,174,43,9,1,1,1,24699,39912,26327,11177,3632

%N Triangle T, read by rows, where column k equals the eigensequence of matrix power T^k.

%F T(n,k) = Sum_{j=0..n-k-1} [T^k](n-k-1,j)*T(j+k,k) for n>k>=0 with T(n,n)=1 for n>=0, where [T^k] denotes the matrix k power of T.

%e Triangle T begins:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 2, 1, 1;

%e 1, 4, 3, 1, 1;

%e 1, 9, 8, 4, 1, 1;

%e 1, 24, 24, 13, 5, 1, 1;

%e 1, 75, 84, 47, 19, 6, 1, 1;

%e 1, 269, 335, 195, 79, 26, 7, 1, 1;

%e 1, 1091, 1495, 908, 372, 121, 34, 8, 1, 1;

%e 1, 4940, 7381, 4674, 1947, 631, 174, 43, 9, 1, 1;

%e 1, 24699, 39912, 26327, 11177, 3632, 989, 239, 53, 10, 1, 1; ...

%e Column 1 is the eigensequence of this triangle T:

%e T(5,1) = 1*(1) + 2*(1) + 1*(2) + 1*(4) = 9;

%e T(6,1) = 1*(1) + 4*(1) + 3*(2) + 1*(4) + 1*(9) = 24;

%e T(7,1) = 1*(1) + 9*(1) + 8*(2) + 4*(4) + 1*(9) + 1*(24) = 75.

%e Matrix square T^2 begins:

%e 1;

%e 2, 1;

%e 3, 2, 1;

%e 5, 5, 2, 1;

%e 10, 13, 7, 2, 1;

%e 24, 38, 23, 9, 2, 1;

%e 69, 127, 84, 35, 11, 2, 1 ...

%e Column 2 of T is the eigensequence of matrix square T^2:

%e T(5,2) = 3*(1) + 2*(1) + 1*(3) = 8;

%e T(6,2) = 5*(1) + 5*(1) + 2*(3) + 1*(8) = 24;

%e T(7,2) = 10*(1) + 13*(1) + 7*(3) + 2*(8) + 1*(24) = 84.

%e Matrix cube T^3 begins:

%e 1;

%e 3, 1;

%e 6, 3, 1;

%e 13, 9, 3, 1;

%e 33, 28, 12, 3, 1;

%e 97, 96, 46, 15, 3, 1;

%e 329, 367, 192, 67, 18, 3, 1 ...

%e Column 3 of T is the eigensequence of matrix cube T^3:

%e T(6,3) = 6*(1) + 3*(1) + 1*(4) = 13;

%e T(7,3) = 13*(1) + 9*(1) + 3*(4) + 1*(13) = 47;

%e T(8,3) = 33*(1) + 28*(1) + 12*(4) + 3*(13) + 1*(47) = 195.

%o (PARI) T(n,k)=local(M);M=matrix(n,n,r,c,if(r>=c,T(r-1,c-1))); if(n<k || k<0,0,if(n==k,1,sum(j=k,n-1,(M^k)[n-k,j-k+1]*T(j,k))))

%Y Rows: A125654, A125655, A125656, A125657; A125658 (row sums); A125659 (central terms).

%K nonn,tabl

%O 0,8

%A _Paul D. Hanna_, Nov 30 2006

%E Example corrected by _Paul D. Hanna_, Oct 29 2010