login
Smallest odd prime base q such that p^3 divides q^(p-1) - 1, where p = prime(n).
13

%I #7 Mar 31 2012 13:20:34

%S 17,53,193,19,2663,239,653,2819,13931,10133,6287,691,10399,3623,6397,

%T 9283,63463,38447,36809,21499,75227,1523,55933,42937,341293,4943,

%U 255007,5573,56633,262079,94961,33289,65543,298157,218579,25667,411589,253987

%N Smallest odd prime base q such that p^3 divides q^(p-1) - 1, where p = prime(n).

%H W. Keller and J. Richstein <a href="http://www1.uni-hamburg.de/RRZ/W.Keller/FermatQuotient.html">Fermat quotients that are divisible by p</a>.

%Y Cf. A125636 = Smallest odd prime base q such that p^2 divides q^(p-1) - 1, where p = Prime[n]. Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1.

%K nonn

%O 1,1

%A _Alexander Adamchuk_, Nov 28 2006