login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the squares of the quadratic nonresidues of prime(n).
2

%I #13 Dec 20 2024 02:15:36

%S 0,4,13,70,253,299,680,1235,2691,3683,6169,7733,10414,13717,22278,

%T 23373,38586,35563,51255,76041,60298,96222,103916,110894,143172,

%U 165337,206000,218494,206991,229164,377698,413305,410726,471766,535357,647941,625331

%N Sum of the squares of the quadratic nonresidues of prime(n).

%C For all n > 3, prime(n) divides a(n).

%D D. M. Burton, Elementary Number Theory, McGraw-Hill, Sixth Edition (2007), p. 185.

%H Nick Hobson, <a href="/A125617/b125617.txt">Table of n, a(n) for n = 1..1000</a>

%e The quadratic nonresidues of 7=prime(4) are 3, 5 and 6. Hence a(4) = 3^2 + 5^2 + 6^2 = 70.

%t Table[Total[Complement[Range[p-1],Union[Table[PowerMod[k, 2, p], {k, p}]]]^2],{p,Prime@Range[37]}] (* _James C. McMahon_, Dec 19 2024 *)

%o (PARI) vector(37, n, p=prime(n); t=1; for(i=2, (p-1)/2, t+=((i^2)%p)^2); p*(p-1)*(2*p-1)/6-t)

%Y Cf. A076409, A076410, A125613-A125618.

%K easy,nonn,changed

%O 1,2

%A _Nick Hobson_, Nov 30 2006