OFFSET
1,1
COMMENTS
A prime p is a base-b deletable prime if when written in base b it has the property that removing some digit leaves either the empty string or another deletable prime. "Digit" means digit in base b.
Deleting a digit cannot leave any leading zeros in the new string. For example, deleting the 2 in 2003 to obtain 003 is not allowed.
MATHEMATICA
b = 10; a = {2}; d = {2, 3, 5, 7};
For[n = 2, n <= 6, n++,
found = False;
p = Select[Range[b^(n - 1), b^n - 1], PrimeQ[#] &];
For[i = 1, i <= Length[p], i++,
c = IntegerDigits[p[[i]], b];
For[j = 1, j <= n, j++,
t = Delete[c, j];
If[t[[1]] == 0, Continue[]];
If[MemberQ[d, FromDigits[t, b]], AppendTo[d, p[[i]]];
If[! found , AppendTo[a, p[[i]]]]; found = True; Break[]]];
]]; a (* Robert Price, Nov 13 2018 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Jan 07 2007
EXTENSIONS
a(6) - a(8) from Michael Kleber, Jan 08 2007
a(9) - a(14) from Phil Carmody, Jan 09 2007
a(15) - a(18) from Joshua Zucker, Jan 09 2007
STATUS
approved