Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Aug 07 2020 02:06:52
%S 1,1,2,6,18,56,182,607,2064,7132,24970,88383,315748,1137014,4122762,
%T 15039631,55157790,203255438,752190764,2794352648,10417047964,
%U 38956725596,146108755556,549442692378,2071236137154,7825588757910
%N Number of 123-segmented permutations of length n.
%C Permutations avoiding a nonconsecutive 321 pattern. - _Ralf Stephan_, May 09 2007
%H Vincenzo Librandi, <a href="/A125306/b125306.txt">Table of n, a(n) for n = 0..200</a>
%H D. Callan, <a href="https://arxiv.org/abs/math/0610428">Permutations avoiding a nonconsecutive instance of a 2- or 3-letter pattern</a>, arXiv:math/0610428 [math.CO], 2006.
%H Anders Claesson, <a href="https://web.archive.org/web/20090102181113/http://www.math.ru.is/anders">Home page (listed in lieu of email address)</a>.
%H Anders Claesson, <a href="http://www.combinatorics.org/Volume_12/Abstracts/v12i1r39.html">Counting segmented permutations using bicolored Dyck paths</a>, The Electronic Journal of Combinatorics 12 (2005), #R39.
%F a(n) = Sum_{k = 0..floor(n/3)} Sum_{i = 0..k} ((2*k + i + 1)/(n -k + i + 1)) * binomial(k-1, k-i) * binomial(2*n - 4*k + i, n - 3*k).
%F O.g.f.: 1 + (C(x) - 1)/(1 - x/(1 + x^2) * (C(x) - 1)), where C(x) is the o.g.f. for the Catalan numbers (A000108). [corrected for a(0) = 1 by _Vaclav Kotesovec_, Mar 21 2014]
%F a(n) ~ 289 * 4^n / (169 * sqrt(Pi) * n^(3/2)). - _Vaclav Kotesovec_, Mar 21 2014
%F Conjecture: 2*(n+2)*a(n) - 6*n*a(n-1) + 4*(-n-2)*a(n-2) + (-13*n+34)*a(n-3) + 2*(-5*n+17)*a(n-4) + (-7*n+40)*a(n-5) + 2*(-2*n+11)*a(n-6) = 0. - _R. J. Mathar_, May 30 2014
%F O.g.f.: (C(x)*x^2 - (C(x) - 1)*x + C(x))/(x^2 - (C(x) - 1)*x + 1), where C(x) is the o.g.f. for the Catalan numbers (A000108). - _Petros Hadjicostas_, Aug 06 2020
%e a(4) = 18 because of the 24 permutations of {1, 2, 3, 4} only 1234, 1243, 1324, 1423, 2134 and 2314 are not 123-segmented; i.e., they contain more occurrences of the pattern (1-2-3) than of the pattern (123).
%p a := n->add(add((2*k+i+1)/(n-k+i+1)*binomial(k-1,k-i)*binomial(2*n-4*k+i,n-3*k),i=0..k),k=0..floor(n/3)); seq(a(n),n=0..25);
%t CoefficientList[Series[1 + ((1 - (1 - 4 x)^(1/2))/(2 x) - 1)/(1 - x/(1 + x^2) ((1 - (1 - 4 x)^(1/2))/(2 x) - 1)), {x, 0, 40}], x] (* _Vaclav Kotesovec_, Mar 21 2014 *)
%Y Cf. A000108.
%K nonn
%O 0,3
%A Anders Claesson (anders(AT)ru.is), Dec 09 2006