login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that binomial(5k, k) + 1 is prime.
5

%I #12 May 11 2019 17:54:06

%S 0,22,86,154,160,488,705,958,975,1262,1932,2845,12718,14434,20337,

%T 38834,40433,44874

%N Numbers k such that binomial(5k, k) + 1 is prime.

%C a(19) > 50000. - _Robert Price_, May 11 2019

%t Do[f=Binomial[5n, n]+1; If[PrimeQ[f], Print[n]], {n, 1, 1000}]

%Y Cf. A125242 = numbers n such that binomial(5n, n) - 1 is prime. Cf. A066699 = numbers n such that binomial(2n, n) + 1 is prime. Cf. A066726 = numbers n such that binomial(2n, n) - 1 is prime. Cf. A125220, A125221, A125240, A125241, A125244, A125245.

%K hard,more,nonn

%O 1,2

%A _Alexander Adamchuk_, Nov 25 2006

%E More terms from _Ryan Propper_, Jan 05 2007

%E a(1)=0 prepended and a(13)-a(18) added by _Robert Price_, May 11 2019