

A125239


Smallest prime divisor of 10*T(n)+1 = 5*n*(n+1)+1, where T(n) = 1 + 2 + ... + n.


1



11, 31, 61, 101, 151, 211, 281, 19, 11, 19, 661, 11, 911, 1051, 1201, 1361, 1531, 29, 1901, 11, 2311, 2531, 11, 3001, 3251, 3511, 19, 31, 19, 4651, 11, 5281, 31, 11, 6301, 6661, 79, 7411, 29, 59, 79, 11, 9461, 9901, 11, 19, 29, 19, 12251, 41, 89, 13781, 11
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

All divisors of 10*T(n)+1 are congruent to 1 or 1 modulo 10; that is, they end in the decimal digit 1 or 9.


LINKS



EXAMPLE

10*T(9) + 1 = 5*9*10 + 1 = 451 = 11*41, so a(9) = 11.


MATHEMATICA

FactorInteger[#][[1, 1]]&/@(10*Accumulate[Range[60]]+1) (* Harvey P. Dale, Dec 12 2011 *)


PROG

(PARI) a(n) = if(n<1, 0, factor(5*n*(n+1)+1)[1, 1])


CROSSREFS



KEYWORD

easy,nonn


AUTHOR



STATUS

approved



