

A125152


The interspersion T(3,2,0), by antidiagonals.


2



1, 3, 2, 9, 6, 4, 27, 20, 13, 5, 81, 60, 40, 15, 7, 243, 182, 121, 45, 22, 8, 729, 546, 364, 136, 68, 25, 10, 2187, 1640, 1093, 410, 205, 76, 30, 11, 6561, 4920, 3280, 1230, 615, 230, 91, 34, 12, 19683, 14762, 9841, 3690, 1845, 691, 273, 102, 38, 14
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Every positive integer occurs exactly once and each pair of rows are interspersed after initial terms.


REFERENCES

Clark Kimberling, Interspersions and fractal sequences associated with fractions (c^j)/(d^k), Journal of Integer Sequences 10 (2007, Article 07.5.1) 18.


LINKS

Table of n, a(n) for n=1..55.
C. Kimberling, Interspersions and Dispersions.


FORMULA

Row 1: t(1,h)=Floor[r*3^(h1)], where r=(3^0)/(2^0), h=1,2,3,... Row 2: t(2,h)=Floor[r*3^(h1)], r=(3^2)/(2^2), where 2=Floor[r] is least positive integer (LPI) not in row 1. Row 3: t(3,h)=Floor[r*3^(h1)], r=(3^2)/(2^1), where 4=Floor[r] is the LPI not in rows 1 and 2. Row m: t(m,h)=Floor[r*3^(h1)], where r=(3^j)/(2^k), where k is the least integer >=0 for which there is an integer j for which the LPI not in rows 1,2,...,m1 is Floor[r].


EXAMPLE

Northwest corner:
1 3 9 27 81 243 729
2 6 20 60 182 546 1640
4 13 40 121 364 1093 3280
5 15 45 136 410 1230 3690
7 22 68 205 615 1845 5535


CROSSREFS

Cf. A125156, A125160.
Sequence in context: A235539 A191449 A175840 * A229119 A269867 A244319
Adjacent sequences: A125149 A125150 A125151 * A125153 A125154 A125155


KEYWORD

nonn,tabl


AUTHOR

Clark Kimberling, Nov 21 2006, corrected Nov 24 2006


STATUS

approved



