login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A125116
Number of 8 X 8 pandiagonal Franklin squares with magic sum 4n.
0
1, 32, 417, 3072, 15585, 60960, 197057, 550912, 1374273, 3127840, 6602849, 13089792, 24605217, 44188704, 76283265, 127213568, 205777537, 323968032, 497842465, 748559360, 1103602017, 1598210592, 2277045057, 3196102656
OFFSET
0,2
LINKS
M. M. Ahmed, Algebraic Combinatorics of Magic Squares, arXiv:math/0405476 [math.CO], 2004.
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
a(n) = s^8/2293760 + s^7/71680 + s^6/3840 + s^5/320 + s^4/40 + 2*s^3/15 + 197*s^2/420 + 106*s/105 + 1 where s=4*n [Ahmed].
G.f.: -(x+1)^3*(x^2+10*x+1)^2 / (x-1)^9. - Colin Barker, Dec 10 2012
a(n) = A145217(n+1) - A145217(n-1). - Peter Bala, Dec 12 2024
MAPLE
a := proc(n) local s ; s :=4*n ; s^8/2293760+s^7/71680+s^6/3840+s^5/320+s^4/40+2*s^3/15+197*s^2/420+106*s/105+1 ; end: for n from 0 to 30 do printf("%d ", a(n)) ; od;
MATHEMATICA
CoefficientList[((1 + x)^3*(1 + 10*x + x^2)^2)/(1 - x)^9 + O[x]^24, x] (* Jean-François Alcover, Dec 06 2017 *)
CROSSREFS
Cf. A145217.
Sequence in context: A275232 A061594 A145403 * A145217 A125444 A022692
KEYWORD
easy,nonn,changed
AUTHOR
R. J. Mathar, Jan 25 2007
STATUS
approved