The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A124973 a(n) = Sum_{k=0..(n-2)/2} a(k)a*(n-1-k), with a(0) = a(1) = 1. 4
 1, 1, 1, 1, 2, 3, 6, 11, 22, 42, 87, 174, 365, 745, 1587, 3303, 7103, 14974, 32477, 69284, 151172, 325077, 713400, 1545719, 3406989, 7423648, 16429555, 35992438, 79912474, 175785514, 391488688, 864591621, 1930333822, 4276537000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Number of unordered rooted trees with all outdegrees <= 2 and, if a node has two subtrees, they have a different number of nodes (equivalently, ordered rooted trees where the left subtree has more nodes than the right subtree). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 FORMULA Lim_{n->infinity} a(n)^(1/n) = 2.327833478... - Vaclav Kotesovec, Nov 20 2019 MAPLE a:= proc(n) option remember;       if n<2 then 1     else add(a(j)*a(n-j-1), j=0..floor((n-2)/2))       fi     end: seq(a(n), n=0..40); # G. C. Greubel, Nov 19 2019 MATHEMATICA a[n_]:= a[n]= If[n<2, 1, Sum[a[j]*a[n-j-1], {j, 0, (n-2)/2}]]; Table[a[n], {n, 0, 40}] (* G. C. Greubel, Nov 19 2019 *) PROG (PARI) a(n) = if(n<2, 1, sum(j=0, (n-2)\2, a(j)*a(n-j-1))); \\ G. C. Greubel, Nov 19 2019 (Sage) @CachedFunction def a(n):     if (n<2): return 1     else: return sum(a(j)*a(n-j-1) for j in (0..floor((n-2)/2))) [a(n) for n in (0..40)] # G. C. Greubel, Nov 19 2019 CROSSREFS Cf. A000108, A000992, A001190, A032305. Sequence in context: A043328 A141072 A002083 * A318123 A226594 A043327 Adjacent sequences:  A124970 A124971 A124972 * A124974 A124975 A124976 KEYWORD easy,nonn AUTHOR Franklin T. Adams-Watters, Nov 14 2006 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 3 08:33 EDT 2022. Contains 355031 sequences. (Running on oeis4.)