Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Mar 14 2024 17:01:01
%S 0,1,2,4,1,2,3,16,4,20,8,2,18,9,3,22,16,10,4,26,20,14,8,5,2,24,18,15,
%T 9,6,3,28,22,19,16,13,10,7,4,29,26,23,20,17,14,11,8,5,33,30,27,24,52,
%U 21,18,15,43,12,9,37,6,3,31,28,56,25,22,50,19,47,16,13,41,10,38,7,35,4,60
%N a(n) = least integer j>=0 such that n = floor((5^j)/(2^k)) for some integer k>=0.
%C The k-sequence is A124919.
%H Robert Israel, <a href="/A124911/b124911.txt">Table of n, a(n) for n = 1..10000</a>
%e 1=[5^0/2^0], 2=[5^1/2^1], 3=[5^2/2^3], 4=[5^4/2^7], ...,
%e so j-sequence=(0,1,2,4,...); k-sequence=(0,1,3,7,...).
%p N:= 100: # for a(1) .. a(N)
%p V:=Vector(N,-1): count:= 0:
%p for j from 0 while count < N do
%p x:= 5^j;
%p k0:= max(0, floor(log[2](x/N)));
%p x:= x/2^(k0-1);
%p for k from k0 do
%p x:= x/2;
%p if x < 1 then break fi;
%p m:= floor(x);
%p if m <= N and V[m] = -1 then V[m]:= j; count:= count+1 fi
%p od od:
%p convert(V, list); # _Robert Israel_, Mar 14 2024
%Y Cf. A124919.
%K nonn
%O 1,3
%A _Clark Kimberling_, Nov 13 2006