%I #17 Nov 14 2019 09:11:36
%S 1,1,3,1,6,6,1,9,18,10,1,12,36,40,15,1,15,60,100,75,21,1,18,90,200,
%T 225,126,28,1,21,126,350,525,441,196,36,1,24,168,560,1050,1176,784,
%U 288,45,1,27,216,840,1890,2646,2352,1296,405,55,1,30,270,1200,3150,5292,5880
%N Triangle read by rows: T(n,k) = k(k+1)*binomial(n-1, k-1)/2 (1 <= k <= n).
%C Sum of row n gives A049611(n).
%C Triangle is P*A, where P is the Pascal triangle written as a lower triangular matrix and C is the diagonal matrix of the triangular numbers 1, 3, 6, 10, ....
%e First few rows of the triangle:
%e 1;
%e 1, 3;
%e 1, 6, 6;
%e 1, 9, 18, 10;
%e 1, 12, 36, 40, 15;
%e 1, 15, 60, 100, 75, 21;
%e ...
%e Sum of row 3 = 38 = (1 + 9 + 18 + 10) = A049611(3).
%p T:=(n,k)->k*(k+1)*binomial(n-1,k-1)/2: for n from 1 to 12 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form
%Y Cf. A049611.
%K nonn,tabl
%O 1,3
%A _Gary W. Adamson_, Nov 10 2006
%E Edited by _N. J. A. Sloane_, Nov 24 2006