Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 08 2022 08:45:28
%S 1,12,126,1560,23325,411768,8388604,193710240,4999999995,142655835300,
%T 4458050224122,151437553296120,5556003412779001,218946945190429680,
%U 9223372036854775800,413620130943168382080,19673204037648268787703
%N Sum of cyclic permutations of 123...n seen as number written in base n+1: ((n+1)^n-1)*(n+1)/2.
%C Sequence A083956 becomes "unnatural" for n>9. The present sequence is more universal since 10 is not singled out as a particular value. See A124798 for the sequence of digits of a(n) in base n+1 and for more results.
%H Vincenzo Librandi, <a href="/A124797/b124797.txt">Table of n, a(n) for n = 1..200</a>
%F a(n) = (n+1)/2*((n+1)^n-1).
%e a(2) = 12[3] + 21[3] = 110[3] = 12[10] where [b] indicates the basis b in which the number is written;
%e a(3) = 123[4] + 231[4] + 312[4] = 126[10];
%e a(4) = 1234[5] + 2341[5] + 3412[5] + 4123[5] = 22220[5] = 1560[10],...
%p a:=proc(n) local b,m,i,s; b:=n+1: m:=add(i*b^(n-i),i=1..n): s:=m: for i to n-1 do m:=b^(n-1)*modp(m,b)+iquo(m,b): s:=s+m: od: s end; # or simply # a := n -> (n+1)/2*((n+1)^n-1)
%t Table[((n+1)^n-1)*(n+1)/2, {n,22}] (* _Vladimir Joseph Stephan Orlovsky_, Dec 28 2010 *)
%o (Magma) [((n + 1)^n - 1)*(n + 1) div 2: n in [1..20]]; // _Vincenzo Librandi_, Jan 09 2013
%Y Cf. A083956, A124798.
%K easy,nonn
%O 1,2
%A _M. F. Hasler_, Nov 07 2006