login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A generalized Motzkin triangle.
2

%I #11 Feb 21 2014 03:19:56

%S 1,0,1,0,0,1,0,1,1,1,0,1,2,1,1,0,3,4,3,2,1,0,6,9,6,5,2,1,0,15,21,15,

%T 12,6,3,1,0,36,51,36,30,15,9,3,1,0,91,127,91,76,40,25,10,4,1,0,232,

%U 323,232,196,105,69,29,14,4,1

%N A generalized Motzkin triangle.

%C Columns include A005043, A001006, A002026. Row sums are A124791. For even k, column k has g.f. x^k*M(x)^(k/2), where M(x)=2/(1-x+sqrt(1-2x-3x^2)) is the g.f. of A001006. For odd k, column k has g.f. x^k*S(x)*M(x)^floor(k/2), S(x)=(1+x-sqrt(1-2x-3x^2))/(2x(1+x)), the g.f. of A005043.

%H E. Deutsch, L. Ferrari and S. Rinaldi, <a href="http://dx.doi.org/10.1016/j.aam.2004.05.002">Production Matrices</a>, Advances in Applied Mathematics, 34 (2005) pp. 101-122.

%F Triangle is the product of A124788 and A124305, that is, it is the product of the expansion of (1+x*y)/(1-x^2*y^2-x^3*y^2) and the inverse of the Riordan array (1,x(1-x^2)).

%e Triangle begins

%e 1,

%e 0, 1,

%e 0, 0, 1,

%e 0, 1, 1, 1,

%e 0, 1, 2, 1, 1,

%e 0, 3, 4, 3, 2, 1,

%e 0, 6, 9, 6, 5, 2, 1,

%e 0, 15, 21, 15, 12, 6, 3, 1,

%e 0, 36, 51, 36, 30, 15, 9, 3, 1,

%e 0, 91, 127, 91, 76, 40, 25, 10, 4, 1,

%e 0, 232, 323, 232, 196, 105, 69, 29, 14, 4, 1

%e Production matrix begins

%e 0, 1,

%e 0, 0, 1,

%e 0, 1, 1, 1,

%e 0, 0, 0, 0, 1,

%e 0, 1, 1, 1, 1, 1,

%e 0, 0, 0, 0, 0, 0, 1,

%e 0, 1, 1, 1, 1, 1, 1, 1,

%e 0, 0, 0, 0, 0, 0, 0, 0, 1,

%e 0, 1, 1, 1, 1, 1, 1, 1, 1, 1

%e - _Paul Barry_, Apr 07 2011

%K easy,nonn,tabl

%O 0,13

%A _Paul Barry_, Nov 07 2006