login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Oblong (promic) abundant numbers = abundant numbers of the form k(k+1).
2

%I #15 Mar 16 2022 20:59:13

%S 12,20,30,42,56,72,90,132,156,210,240,272,306,342,380,420,462,552,600,

%T 650,702,756,812,870,930,992,1056,1122,1190,1260,1332,1482,1560,1640,

%U 1722,1806,1980,2070,2256,2352,2450,2550,2652,2862,2970,3080,3192,3306

%N Oblong (promic) abundant numbers = abundant numbers of the form k(k+1).

%C Promic numbers are highly divisible, so most of them are abundant.

%H Amiram Eldar, <a href="/A124672/b124672.txt">Table of n, a(n) for n = 1..10000</a>

%F If k > 2 is 0 or 2 mod 3, then k*(k+1) is in this sequence; the bounds n^2 < a(n) < (9/4)*n^2 + 6n + 4 can be derived from this. Probably a(n) ~ kn^2 with k near 1.496. - _Charles R Greathouse IV_, Mar 16 2022

%e 56 is in the sequence because 56=7*8 and the sum of its divisors 1+2+4+7+8+14+28+56=120 > 2*56.

%p with(numtheory): a:=proc(k) if sigma(k*(k+1))>2*k*(k+1) then k*(k+1) else fi end: seq(a(k),k=1..75); # _Emeric Deutsch_, Jan 01 2007

%p isA005101 := proc(n) if numtheory[sigma](n) > 2*n then RETURN(true) ; else RETURN(false) ; fi ; end : for k from 1 to 80 do if isA005101(k*(k+1)) then printf("%d,",k*(k+1)) ; fi ; od ; # _R. J. Mathar_, Jan 07 2007

%t s = {}; Do[ob = n*(n + 1); If[DivisorSigma[1, ob] > 2*ob, AppendTo[s, ob]], {n, 1, 100}]; s (* _Amiram Eldar_, Jun 07 2019 *)

%o (PARI) helper(n)=my(k=sqrtint(n)); if(k*(k+1)>n, k, k+1)

%o list(lim)=my(v=List(),last=4/3,cur); forfactored(n=4,helper(lim\1), cur=sigma(n,-1); if(cur*last>2, listput(v, (n[1]-1)*n[1])); last=cur); Vec(v) \\ _Charles R Greathouse IV_, Mar 16 2022

%Y Intersection of A002378 (oblong numbers) and A005101 (abundant numbers).

%Y Cf. A077804 (deficient oblong numbers).

%K nonn,easy

%O 1,1

%A _Tanya Khovanova_, Dec 27 2006

%E More terms from _Emeric Deutsch_, Jan 01 2007

%E More terms from _R. J. Mathar_, Jan 07 2007