%I #9 Oct 02 2016 10:29:26
%S 1,-1,14,5,-1,5,17,11,16,-1,10,10,6,3,36,12,-1,6,7,13,37,16,4,26,52,
%T -1,2,12,6,9,11,13,16,14,4,5,-1,2,8,18,10,3,4,12,10,3,20,9,6,-1,2,48,
%U 6,4,49,11,32,13,9,15,19,4,5,21,-1,2,5,24,17,3,6,19,16,5,3,4,11,17,7,19,9
%N Position of the first 0 in the decimal expansion of the square root of n, or -1 if 0 never appears.
%C The real 0's representations after the decimal point of the expansion of the square root of perfect squares are ignored. In other words for sqrt(4) = 2.0000..., the trailing 0's are ignored.
%e For n=14, the concatenated digits of sqrt(14) are The digit 0 in the 36th position of this string of digits so 36 is the 15th entry the table counting from the 0th entry.
%t Join[{1},Table[If[IntegerQ[Sqrt[n]],{{-1,-1}},SequencePosition[ RealDigits[ Sqrt[n],10,100][[1]],{0},1]],{n,100}][[All,1]][[All,1]]] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Oct 02 2016 *)
%o (PARI) digitpos(n,m) = /* m-th digit in sqrt expansions */ { local(x,y,r,dot); default(realprecision,1000); for(x=0,n, r = sqrt(x); if(issquare(x), y=find(Str(floor(r)),m), y=find(Str(r),m); dot=find(Str(r),"."); if(dot < y, y--); ); if(y, print1(y","),print1(-1",") ) ) } find(str,match) = /* Revised 2007 */ { local(lnm,lns,tstr,vstr,x,j); vstr=Vec(Str(str)); match=Str(match); lns=length(str); lnm=length(match); for(x=1,lns-lnm+1, tstr=""; for(j=x,x+lnm-1, tstr=concat(tstr,vstr[j]); ); if(match==tstr,return(x)) ); return(0); }
%K base,easy,sign
%O 0,3
%A _Cino Hilliard_, Dec 22 2006, corrected Jul 18 2007