Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Mar 30 2012 18:37:01
%S 1,1,0,1,1,0,1,2,2,0,1,3,7,5,0,1,4,15,30,16,0,1,5,26,91,159,66,0,1,6,
%T 40,204,666,1056,348,0,1,7,57,385,1899,5955,8812,2321,0,1,8,77,650,
%U 4345,21180,65794,92062,19437,0,1,9,100,1015,8616,57876,287568,901881
%N Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_{n*k}(y) ]^n for n>=0, with R_0(y)=1.
%C Antidiagonal sums equal row 1 (A124551).
%F Let G_n(y) be the g.f. of row n in table A124560, then R_n(y) = G_n(y)^n and thus G_n(y) = Sum_{k>=0} y^k * R_{n*k}(y) for n>=0, where R_n(y) is the g.f. of row n in this table.
%e The g.f. of row n, R_n(y), simultaneously satisfies:
%e R_n(y) = [1 + y*R_{n}(y) + y^2*R_{2n}(y) + y^3*R_{3n}(y) +...]^n
%e more explicitly,
%e R_0 = [1 + y + y^2 + y^3 +... ]^0 = 1,
%e R_1 = [1 + y*R_1 + y^2*R_2 + y^3*R_3 + y^4*R_4 +...]^1,
%e R_2 = [1 + y*R_2 + y^2*R_4 + y^3*R_6 + y^4*R_8 +...]^2,
%e R_3 = [1 + y*R_3 + y^2*R_6 + y^3*R_9 + y^4*R_12 +...]^3,
%e R_4 = [1 + y*R_4 + y^2*R_8 + y^3*R_12 + y^4*R_16 +...]^4,
%e etc., for all rows.
%e Table begins:
%e 1,0,0,0,0,0,0,0,0,0,...
%e 1,1,2,5,16,66,348,2321,19437,203554,2661035,43399794,883165898,...
%e 1,2,7,30,159,1056,8812,92062,1200415,19512990,395379699,9991017068,...
%e 1,3,15,91,666,5955,65794,901881,15346419,324465907,8535776700,...
%e 1,4,26,204,1899,21180,287568,4802716,99084889,2531896840,...
%e 1,5,40,385,4345,57876,926340,18088835,434349525,12879458545,...
%e 1,6,57,650,8616,133212,2447115,54419202,1481595429,49675372516,...
%e 1,7,77,1015,15449,271677,5621371,139777303,4236941723,157754261392,...
%e 1,8,100,1496,25706,506376,11637540,319211576,10629219251,...
%e 1,9,126,2109,40374,880326,22228296,665618589,24097683942,...
%e 1,10,155,2870,60565,1447752,39814650,1290831110,50395939380,...
%e 1,11,187,3795,87516,2275383,67666852,2359273213,98672395096,...
%e 1,12,222,4900,122589,3443748,110082100,4104444564,182882370066,...
%e 1,13,260,6201,167271,5048472,172579056,6848496031,323591733868,...
%e 1,14,301,7714,223174,7201572,262109169,11025158762,550236760920,...
%e 1,15,345,9455,292035,10032753,387284805,17206288875,903909656190,...
%e 1,16,392,11440,375716,13690704,558624184,26132289904,1440743993738,...
%e 1,17,442,13685,476204,18344394,788813124,38746675145,2235979092419,...
%e 1,18,495,16206,595611,24184368,1092983592,56235032046,3388787136045,...
%e 1,19,551,19019,736174,31424043,1489009062,80068650785,5027951628273,...
%e 1,20,610,22140,900255,40301004,1997816680,112053079180,7318490555455,...
%e 1,21,672,25585,1090341,51078300,2643716236,154381866075,10469322413655,..
%e 1,22,737,29370,1309044,64045740,3454745943,209695755346,14742078039007,..
%e 1,23,805,33511,1559101,79521189,4463035023,281147592671,20461165963557,..
%e 1,24,876,38024,1843374,97851864,5705183100,372473207208,28025203801701,..
%o (PARI) {T(n,k)=if(k==0,1,if(n==0,0,if(k==1,n,if(n<=k, Vec(( 1+x*Ser( vector(k,j,sum(i=0,j-1,T(n+i*n,j-1-i)) ) ))^n)[k+1], Vec(subst(Ser(concat(concat(0, Vec(subst(Ser(vector(k+1,j,T(j-1,k))),x,x/(1+x))/(1+x))),vector(n-k+1)) ),x,x/(1-x))/(1-x +x*O(x^(n))))[n]))))}
%Y Rows: A124551, A124552, A124553, A124554, A124555, A124556; diagonals: A124557, A124558, A124559; variants: A124560, A124460, A124530, A124540.
%K nonn,tabl
%O 0,8
%A _Paul D. Hanna_, Nov 07 2006