login
A124543
Row 3 of rectangular table A124540; equals the self-convolution cube of A124533 (row 3 of table A124530).
6
1, 3, 15, 73, 369, 1959, 10912, 63543, 385341, 2424988, 15788469, 106075089, 733801709, 5217101283, 38060759175, 284533309380, 2177136417042, 17032924895739, 136129119703837, 1110507731328900, 9240322072954209
OFFSET
0,2
COMMENTS
In table A124540, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = [ Sum_{k>=0} y^k*R_k(y)^n ]^n for n>=0.
FORMULA
G.f.: A(x) = [ Sum_{n>=0} x^n*R_n(x)^3 ]^3, where R_n(x) is the g.f. of row n in table A124540.
PROG
(PARI) {a(n)=local(R); R=vector(n+4, r, vector(n+4, c, 1)); for(i=0, n+3, for(r=0, n+3, R[r+1]=Vec(sum(c=0, n, x^c*Ser(R[c+1])^(r*c)+O(x^(n+1)))))); Vec(Ser(R[4])^3+O(x^(n+1)))[n+1]}
CROSSREFS
Cf. A124533; A124540 (table); other rows: A124531, A124542, A124544, A124545, A124546.
Sequence in context: A232289 A370480 A055837 * A007142 A357222 A224397
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 05 2006
STATUS
approved