login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_k(y)^n ]^n for n>=0, with R_0(y) = 1.
12

%I #6 Jun 14 2017 00:13:23

%S 1,1,0,1,1,0,1,2,2,0,1,3,7,5,0,1,4,15,26,16,0,1,5,26,73,107,62,0,1,6,

%T 40,156,369,486,274,0,1,7,57,285,939,1959,2398,1332,0,1,8,77,470,1995,

%U 5764,10912,12668,6978,0,1,9,100,721,3756,13976,36248,63543,70863,38873,0

%N Rectangular table, read by antidiagonals, such that the g.f. of row n, R_n(y), satisfies: R_n(y) = [ Sum_{k>=0} y^k * R_k(y)^n ]^n for n>=0, with R_0(y) = 1.

%C Antidiagonal sums equal row 1 (A124531).

%F Let S_n(y) be the g.f. of row n in table A124530, then R_n(y) = S_n(y)^n and so S_n(y) = Sum_{k>=0} y^k * R_k(y)^n for n>=0, where R_n(y) is the g.f. of row n in this table.

%e Row g.f.s R_n(y) simultaneously satisfy:

%e R_n(y) = [1 + y*R_1(y)^n + y^2*R_2(y)^n + y^3*R_3(y)^n +...]^n

%e more explicitly:

%e R_0 = [1 + y + y^2 + y^3 + y^4 + ...]^0 = 1;

%e R_1 = [1 + y*(R_1)^1 + y^2*(R_2)^1 + y^3*(R_3)^1 + y^4*(R_4)^1 +...]^1;

%e R_2 = [1 + y*(R_1)^2 + y^2*(R_2)^2 + y^3*(R_3)^2 + y^4*(R_4)^2 +...]^2;

%e R_3 = [1 + y*(R_1)^3 + y^2*(R_2)^3 + y^3*(R_3)^3 + y^4*(R_4)^3 +...]^3;

%e R_4 = [1 + y*(R_1)^4 + y^2*(R_2)^4 + y^3*(R_3)^4 + y^4*(R_4)^4 +...]^4;

%e etc., for all rows.

%e Table begins:

%e 1,0,0,0,0,0,0,0,0,0,0,...

%e 1,1,2,5,16,62,274,1332,6978,38873,228090,...

%e 1,2,7,26,107,486,2398,12668,70863,416304,2552490,...

%e 1,3,15,73,369,1959,10912,63543,385341,2424988,15788469,...

%e 1,4,26,156,939,5764,36248,233900,1549193,10529052,73390856,...

%e 1,5,40,285,1995,13976,98665,704810,5107950,37619020,281850156,...

%e 1,6,57,470,3756,29658,233241,1836912,14543877,116087596,936035298,...

%e 1,7,77,721,6482,57057,495922,4282895,36922550,318834341,2765000007,...

%e 1,8,100,1048,10474,101800,970628,9140344,85445683,795971176,7410928800,...

%e 1,9,126,1461,16074,171090,1777416,18151272,183201255,1834958107,...

%e 1,10,155,1970,23665,273902,3081700,33954660,368443380,3954149640,...

%e 1,11,187,2585,33671,421179,5104528,60398327,701775756,8042277034,...

%e 1,12,222,3316,46557,626028,8133916,102916452,1275653922,15559229828,...

%o (PARI) T(n,k)=local(m=max(n,k),R);R=vector(m+1,r,vector(m+1,c,if(r==1 || c<=2,1,r^(c-2)))); for(i=0,m, for(r=0,m, R[r+1]=Vec(sum(c=0,m, x^c*Ser(R[c+1])^(r*c)+O(x^(m+1)))))); Vec(Ser(R[n+1])^n+O(x^(k+1)))[k+1]

%Y Rows: A124531, A124542, A124543, A124544, A124545, A124546; diagonals: A124547, A124548, A124549; related tables: A124530, A124550, A124460.

%K nonn,tabl

%O 0,8

%A _Paul D. Hanna_, Nov 05 2006