login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124539
Triangle, read by rows, where row n equals the inverse binomial transform of column n in the rectangular table A124530.
1
1, 1, 0, 1, 1, 0, 1, 4, 1, 0, 1, 15, 8, 1, 0, 1, 61, 51, 14, 1, 0, 1, 273, 311, 138, 24, 1, 0, 1, 1331, 1901, 1191, 349, 42, 1, 0, 1, 6977, 11838, 9693, 4100, 868, 76, 1, 0, 1, 38872, 75556, 76950, 43257, 13459, 2163, 142, 1, 0, 1, 228089, 495146, 606275, 430517
OFFSET
0,8
COMMENTS
In table A124530, the g.f. of row n, R_n(y), simultaneously satisfies: R_n(y) = Sum_{k>=0} y^k*R_k(y)^(n*k) for n>=0.
FORMULA
Secondary diagonal T(n+1,n) = 2^n + 2n.
EXAMPLE
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 4, 1, 0;
1, 15, 8, 1, 0;
1, 61, 51, 14, 1, 0;
1, 273, 311, 138, 24, 1, 0;
1, 1331, 1901, 1191, 349, 42, 1, 0;
1, 6977, 11838, 9693, 4100, 868, 76, 1, 0;
1, 38872, 75556, 76950, 43257, 13459, 2163, 142, 1, 0;
1, 228089, 495146, 606275, 430517, 180000, 43274, 5442, 272, 1, 0; ...
PROG
(PARI) T(n, k)=local(m=max(n, k), R); R=vector(m+1, r, vector(m+1, c, if(r==1 || c<=2, 1, r^(c-2)))); for(i=0, m, for(r=0, m, R[r+1]=Vec(sum(c=0, m, x^c*Ser(R[c+1])^(r*c)+O(x^(m+1)))))); Vec(subst(Ser(vector(n+1, j, R[j][n+1])), x, x/(1+x))/(1+x))[k+1]
CROSSREFS
Cf. A124530 (table).
Sequence in context: A294522 A058710 A281891 * A351703 A369923 A249094
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Nov 05 2006
STATUS
approved