login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the size of the last block is k, 1<=k<=n; the blocks are ordered with increasing least elements.
10

%I #35 Jan 10 2022 08:11:33

%S 1,1,1,3,1,1,9,4,1,1,31,14,5,1,1,121,54,20,6,1,1,523,233,85,27,7,1,1,

%T 2469,1101,400,125,35,8,1,1,12611,5625,2046,635,175,44,9,1,1,69161,

%U 30846,11226,3488,952,236,54,10,1,1,404663,180474,65676,20425,5579,1366,309,65,11,1,1

%N Triangle read by rows: T(n,k) is the number of set partitions of {1,2,...,n} in which the size of the last block is k, 1<=k<=n; the blocks are ordered with increasing least elements.

%C Number of restricted growth functions of length n with a multiplicity k of the maximum value. RGF's are here defined as f(1)=1, f(i) <= 1+max_{1<=j<i} f(j). - _R. J. Mathar_, Mar 18 2016

%C This is table 9.2 in the Gould-Quaintance reference. - _Peter Luschny_, Apr 25 2016

%H Alois P. Heinz, <a href="/A124496/b124496.txt">Rows n = 1..141, flattened</a>

%H H. W. Gould and Jocelyn Quaintance, <a href="http://www.doiserbia.nb.rs/img/doi/1452-8630/2007/1452-86300702371G.pdf">A linear binomial recurrence and the Bell numbers and polynomials</a>. Applicable Analysis and Discrete Mathematics, 1 (2007), 371-385.

%F The row enumerating polynomial P[n](t)=Q[n](t,1), where Q[1](t,s)=ts and Q[n](t,s)=s*dQ[n-1](t,s)/ds +(t-1)Q[n-1](t,s)+tsQ[n-1](1,s) for n>=2.

%F A008275^-1*ONES*A008275 or A008277*ONES*A008277^-1 where ONES is a triangle with all entries = 1. [From _Gerald McGarvey_, Aug 20 2009]

%F Conjectures: T(n,n-3) = A000096(n). T(n,n-4)= A055831(n+1). - _R. J. Mathar_, Mar 13 2016

%e T(4,2) = 4 because we have 13|24, 14|23, 12|34 and 1|2|34.

%e Triangle starts:

%e 1;

%e 1,1;

%e 3,1,1;

%e 9,4,1,1;

%e 31,14,5,1,1;

%e 121,54,20,6,1,1;

%e 523,233,85,27,7,1,1;

%e 2469,1101,400,125,35,8,1,1;

%e 12611,5625,2046,635,175,44,9,1,1;

%e 69161,30846,11226,3488,952,236,54,10,1,1;

%e 404663,180474,65676,20425,5579,1366,309,65,11,1,1;

%e 2512769,1120666,407787,126817,34685,8494,1893,395,77,12,1,1;

%e ...

%p Q[1]:=t*s: for n from 2 to 12 do Q[n]:=expand(t*s*subs(t=1,Q[n-1])+s*diff(Q[n-1],s)+t*Q[n-1]-Q[n-1]) od:for n from 1 to 12 do P[n]:=sort(subs(s=1,Q[n])) od: for n from 1 to 12 do seq(coeff(P[n],t,j),j=1..n) od;

%p # second Maple program:

%p T:= proc(n, k) option remember; `if`(n=k, 1,

%p add(T(n-j, k)*binomial(n-1, j-1), j=1..n-k))

%p end:

%p seq(seq(T(n, k), k=1..n), n=1..12); # _Alois P. Heinz_, Jul 05 2016

%t T[n_, k_] := T[n, k] = If[n == k, 1, Sum[T[n-j, k]*Binomial[n-1, j-1], {j, 1, n-k}]];

%t Table[Table[T[n, k], {k, 1, n}], {n, 1, 12}] // Flatten; (* _Jean-François Alcover_, Jul 21 2016, after _Alois P. Heinz_ *)

%Y Row sums are the Bell numbers (A000110). It seems that T(n, 1), T(n, 2), T(n, 3) and T(n, 4) are given by A040027, A045501, A045499 and A045500, respectively. A121207 gives a very similar triangle.

%Y T(2n,n) gives A297924.

%Y Cf. A000110, A040027, A045501, A045499, A045500, A186020, A160185.

%K nonn,tabl

%O 1,4

%A _Emeric Deutsch_, Nov 14 2006