Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Dec 10 2024 05:27:29
%S 1,3,9,29,97,331,1145,4001,14089,49915,177713,635293,2278841,8198227,
%T 29567729,106872961,387038993,1404052659,5101219929,18559193245,
%U 67605310097,246541193883,899999057385,3288522934433,12026324883865
%N a(n) = Sum_{k=0..n} 2^k*C([(n+k)/2],k)*C([(n+k+1)/2],k) where [x]=floor(x).
%C This is the inverse Motzkin transform of A026378 assuming offset 1 here. - _R. J. Mathar_, Jul 07 2009
%C Hankel transform is Somos-4 variant A162547. - _Paul Barry_, Jan 09 2011
%C a(n) is the number of peakless Motzkin paths of length n in which the (1,0)-steps at level 0 come in 3 colors and those at a higher level come in 2 colors. Example: a(3)=29 because, denoting U=(1,1), H=(1,0), and D=(1,-1), we have 3^3 = 27 paths of shape HHH and 2 paths of shape UHD. - _Emeric Deutsch_, May 03 2011
%C Conjecture: (n+1)*a(n) -2*(2*n+1)*a(n-1) +2*(n-1)*a(n-2) +2*(5-2*n)*a(n-3) +(n-3)*a(n-4) =0. - _R. J. Mathar_, Aug 09 2012
%H G. C. Greubel, <a href="/A124431/b124431.txt">Table of n, a(n) for n = 0..1000</a>
%F a(n) = Sum_{k=0..n} 2^k*A124428(n+k,k).
%F G.f.: (((x^2+1)*(1-4*x+x^2))^(1/2) - (1-4*x+x^2))/(2*x*(1-4*x+x^2)). - Maksym Voznyy (voznyy(AT)mail.ru), Aug 12 2009
%F G.f.: (1/(1-4*x+x^2))*c(-x/(1-4*x+x^2)), c(x) the g.f. of A000108. - _Paul Barry_, Jan 09 2011
%F G.f.: G(0)/(2*x) - 1/(2*x), where G(k)= 1 + 4*x*(4*k+1)/( (1+x^2)*(4*k+2) - x*(1+x^2)*(4*k+2)*(4*k+3)/(x*(4*k+3) + (1+x^2)*(k+1)/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 26 2013
%F a(n) ~ sqrt(14*sqrt(3)-24) * (2+sqrt(3))^(n+2) / (2*sqrt(3*Pi*n)). - _Vaclav Kotesovec_, Feb 03 2014
%F 0 = a(n)*(+a(n+1) - 6*a(n+2) + 6*a(n+3) - 18*a(n+4) + 5*a(n+5)) + a(n+1)*(-2*a(n+1) + 14*a(n+2) - 10*a(n+3) + 61*a(n+4) - 18*a(n+5)) + a(n+2)*(+4*a(n+2) - 28*a(n+3) - 10*a(n+4) + 6*a(n+5)) + a(n+3)*(+4*a(n+3) + 14*a(n+4) - 6*a(n+5)) + a(n+4)*(-2*a(n+4) + a(n+5)) if n>=0. - _Michael Somos_, Aug 06 2014
%F Conjecture: +(n+1)*a(n) +2*(-2*n-1)*a(n-1) +2*(n-1)*a(n-2) +2*(-2*n+5)*a(n-3) +(n-3)*a(n-4)=0. - _R. J. Mathar_, Jun 17 2016
%e G.f. = 1 + 3*x + 9*x^2 + 29*x^3 + 97*x^4 + 331*x^5 + 1145*x^6 + 4001*x^7 + ...
%t Table[Sum[2^k Binomial[Floor[(n+k)/2],k]Binomial[Floor[(n+k+1)/2],k],{k,0,n}],{n,0,30}] (* _Harvey P. Dale_, May 20 2012 *)
%t CoefficientList[Series[(Sqrt[(1+x^2)/(1-4*x+x^2)] -1)/(2*x), {x,0,30}],x] (* _G. C. Greubel_, Feb 26 2019 *)
%o (PARI) a(n)=sum(k=0,n,2^k*binomial((n+k)\2,k)*binomial((n+k+1)\2,k))
%o (PARI) my(x='x+O('x^30)); Vec((sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x)) \\ _G. C. Greubel_, Feb 26 2019
%o (Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (Sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x) )); // _G. C. Greubel_, Feb 26 2019
%o (Sage) ((sqrt((1+x^2)/(1-4*x+x^2)) -1)/(2*x)).series(x, 30).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 26 2019
%Y Cf. A124428.
%K nonn
%O 0,2
%A _Paul D. Hanna_, Oct 31 2006