login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of 1/(1-2x^2-3x^3-x^4).
2

%I #7 Jul 13 2015 21:54:26

%S 1,0,2,3,5,12,21,42,83,159,313,609,1186,2316,4512,8799,17158,33450,

%T 65225,127173,247958,483471,942660,1837989,3583691,6987429,13624009,

%U 26563920,51793996,100987296,196903761,383920500

%N Expansion of 1/(1-2x^2-3x^3-x^4).

%C Diagonal sums of number triangle A124369.

%H Harvey P. Dale, <a href="/A124370/b124370.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,2,3,1).

%F a(n)=sum{k=0..floor(n/2), sum{j=0..n-k, C(j,n-k-j)*C((j+k)/2,(j-k)/2)*(1+(-1)^(j-k))/2}}

%F a(0)=1, a(1)=0, a(2)=2, a(3)=3, a(n)=2*a(n-2)+3*a(n-3)+a(n-4). - _Harvey P. Dale_, Feb 11 2015

%t CoefficientList[Series[1/(1-2x^2-3x^3-x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,2,3,1},{1,0,2,3},40] (* _Harvey P. Dale_, Feb 11 2015 *)

%K easy,nonn

%O 0,3

%A _Paul Barry_, Oct 27 2006