OFFSET
1,1
COMMENTS
The antiprism graph is defined for n>=3; extended to n=1 using the closed form.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Max A. Alekseyev, Gérard P. Michon, Making Walks Count: From Silent Circles to Hamiltonian Cycles, arXiv:1602.01396 [math.CO], 2016-2017.
Mordecai J. Golin and Yiu Cho Leung, Unhooking Circulant Graphs: A Combinatorial Method for Counting Spanning Trees, Hamiltonian Cycles and other Parameters, Technical report HKUST-TCSC-2004-02. See also.
Eric Weisstein's World of Mathematics, Antiprism Graph
Eric Weisstein's World of Mathematics, Hamiltonian Cycle
Index entries for linear recurrences with constant coefficients, signature (3,-1,-2,0,1).
FORMULA
a(n) = 3*a(n-1) - a(n-2) - 2*a(n-3) + a(n-5).
a(n) = 2*a(n-1) + a(n-2) - a(n-3) - a(n-4) - 12.
O.g.f.: -18*x^2-6*x-6+(4*x^2+4*x-6)/(x^3+2*x^2+x-1)+4/(x-1)^2+4/(x-1) . - R. J. Mathar, Feb 10 2008
MATHEMATICA
Table[2 (2 n + RootSum[-1 - 2 # - #^2 + #^3 &, #^n &]), {n, 20}]
LinearRecurrence[{3, -1, -2, 0, 1}, {6, 18, 32, 58, 112}, 50] (* Vincenzo Librandi, Feb 04 2016 *)
Join[{6, 18}, Rest[Rest[Rest[CoefficientList[Series[-18*x^2 - 6*x - 6 + (4*x^2 + 4*x - 6)/(x^3 + 2*x^2 + x - 1) + 4/(x - 1)^2 + 4/(x - 1), {x, 0, 50}], x]]]]] (* G. C. Greubel, Apr 27 2017 *)
PROG
(Magma) I:=[6, 18, 32, 58, 112]; [n le 5 select I[n] else 3*Self(n-1) - Self(n-2) - 2*Self(n-3) + Self(n-5): n in [1..35]]; // Vincenzo Librandi, Feb 04 2016
(PARI) x='x+O('x^50); concat([6, 18], Vec(-18*x^2-6*x-6+(4*x^2+4*x-6)/(x^3+2*x^2+x-1)+4/(x-1)^2+4/(x-1))) \\ G. C. Greubel, Apr 27 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Eric W. Weisstein, Oct 27 2006
EXTENSIONS
Formulas and further terms from Max Alekseyev, Feb 08 2008
Typo in formula corrected by Max Alekseyev, Nov 03 2010
STATUS
approved