Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Jan 30 2024 08:22:44
%S 0,4,24,60,144,260,456,700,1056,1476,2040,2684,3504,4420,5544,6780,
%T 8256,9860,11736,13756,16080,18564,21384,24380,27744,31300,35256,
%U 39420,44016,48836,54120,59644,65664,71940,78744,85820,93456,101380,109896,118716
%N a(n) = 4*n*(floor(n^2/2)+1). For n >= 3, this is the number of directed Hamiltonian paths on the n-prism graph.
%H Stefano Spezia, <a href="/A124350/b124350.txt">Table of n, a(n) for n = 0..10000</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/HamiltonianPath.html">Hamiltonian Path</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/PrismGraph.html">Prism Graph</a>.
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-4,1,2,-1).
%F From _Colin Barker_, Sep 06 2013: (Start)
%F a(n) = n*(3 + (-1)^n + 2*n^2).
%F G.f.: 4*x*(x^2+1)*(x^2+4*x+1) / ((x-1)^4*(x+1)^2). (End)
%F a(n) = 4*n*A080827(n). - _R. J. Mathar_, Jan 25 2016
%F E.g.f.: 2*x*((2 + 3*x + x^2)*cosh(x) + (3 + 3*x + x^2)*sinh(x)). - _Stefano Spezia_, Jan 27 2024
%t LinearRecurrence[{2, 1, -4, 1, 2, -1}, {0, 4, 24, 60, 144, 260}, 60] (* _Vincenzo Librandi_, Jan 26 2016 *)
%o (PARI) Vec(4*x*(x^2+1)*(x^2+4*x+1)/((x-1)^4*(x+1)^2) + O(x^100)) \\ _Colin Barker_, Sep 06 2013
%Y Cf. A080827, A124349.
%K nonn,easy
%O 0,2
%A _Eric W. Weisstein_, Oct 26 2006
%E Formula and further terms from _Max Alekseyev_, Feb 07 2008