Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Mar 29 2020 07:04:51
%S 0,3,12,90,528,3372,20880,130728,815232,5091120,31777728,198386592,
%T 1238434560,7731150528,48262685952,301286851200,1880825008128,
%U 11741315949312,73296813911040,457565678934528,2856418110492672,17831591947054080,111316221335113728
%N a(n) = ((2 + 3*sqrt(2))^n - (2 - 3*sqrt(2))^n)/(2*sqrt(2)).
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,14).
%F From _Philippe Deléham_, Dec 12 2006: (Start)
%F a(n) = 4*a(n-1) + 14*a(n-2) for n >= 2; a(0)=0, a(1)=3.
%F G.f.: 3x/(1-4*x-14*x^2). (End)
%t Expand[Table[((2 + 3Sqrt[2])^n - (2 - 3Sqrt[2])^n)/(2Sqrt[2]), {n, 0, 30}]]
%t LinearRecurrence[{4, 14}, {0, 3}, 50] (* _Amiram Eldar_, Mar 29 2020 *)
%K nonn,easy
%O 1,2
%A _Artur Jasinski_, Dec 10 2006
%E More terms from _Amiram Eldar_, Mar 29 2020