login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Abundant numbers k such that sigma(k) is a perfect power.
1

%I #12 Aug 02 2024 08:57:12

%S 66,70,102,210,282,364,400,510,642,690,714,770,820,930,966,1080,1092,

%T 1146,1164,1200,1416,1566,1624,1672,1782,2130,2226,2250,2346,2460,

%U 2530,2586,2652,2860,2910,2912,3012,3198,3210,3340,3498,3522,3560,3710,3810

%N Abundant numbers k such that sigma(k) is a perfect power.

%C Positive integers k such that sigma(k) > 2*k and sigma(k) = a^b where both a and b are greater than 1.

%C If k is a term with sigma(k) a square, and p and q are members of A066436 that do not divide k, then k*p*q is in the sequence. Thus if A066436 is infinite, so is this sequence. - _Robert Israel_, Oct 29 2018

%H Robert Israel, <a href="/A124142/b124142.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 66 since sigma(66) = 144 = 12^2.

%p with(numtheory); egcd := proc(n::posint) local L; if n>1 then L:=ifactors(n)[2]; L:=map(z->z[2],L); return igcd(op(L)) else return 1 fi; end; L:=[]: for w to 1 do for n from 1 to 10000 do s:=sigma(n); if s>2*n and egcd(s)>1 then print(n,s,ifactor(s)); L:=[op(L),n]; fi od od;

%t filterQ[n_] := With[{s = DivisorSigma[1, n]}, s > 2n && GCD @@ FactorInteger[s][[All, 2]] > 1];

%t Select[Range[4000], filterQ] (* _Jean-François Alcover_, Sep 16 2020 *)

%o (PARI) is(k) = {my(s = sigma(k)); s > 2*k && ispower(s);} \\ _Amiram Eldar_, Aug 02 2024

%Y Cf. A001597, A005101, A065496, A066436.

%K nonn

%O 1,1

%A _Walter Kehowski_, Dec 01 2006