login
Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.
4

%I #25 Aug 21 2023 08:24:53

%S 1,4,-1,15,-8,1,56,-46,12,-1,209,-232,93,-16,1,780,-1091,592,-156,20,

%T -1,2911,-4912,3366,-1200,235,-24,1,10864,-21468,17784,-8010,2120,

%U -330,28,-1,40545,-91824,89238,-48624,16255,-3416,441,-32,1,151316,-386373,430992,-275724,111524,-29589,5152,-568,36,-1

%N Triangle T(n,k) with the coefficient [x^k] of the characteristic polynomial of the following n X n triangular matrix: 4 on the main diagonal, -1 of the two adjacent subdiagonals, 0 otherwise.

%C The matrices are {4} if n=1, {{4,-1},{-1,4}} if n=2, {{4,-1,0},{-1,4,-1},{0,-1,4}} if n=3 etc. The empty matrix at n=0 has an empty product (determinant) with assigned value =1.

%C Riordan array (1/(1-4*x+x^2), -x/(1-4*x+x^2)). - _Philippe Deléham_, Mar 04 2016

%H G. C. Greubel, <a href="/A124029/b124029.txt">Rows n = 0..50 of the triangle, flattened</a>

%H Joanne Dombrowski, <a href="http://projecteuclid.org/euclid.pjm/1102703882">Tridiagonal matrix representations of cyclic self-adjoint operators</a>, Pacific J. Math. 114, no. 2 (1984), 325-334.

%F T(n, k) = [x^k]( p(n, x) ), where p(n, x) = (4-x)*p(n-1, x) - p(n-2, x), p(0, x) = 1, p(1, x) = 4-x.

%F From _G. C. Greubel_, Aug 20 2023: (Start)

%F T(n, k) = [x^k]( ChebyshevU(n, (4-x)/2) ).

%F Sum_{k=0..n} T(n, k) = A001906(n+1).

%F Sum_{k=0..n} (-1)^k*T(n, k) = A004254(n+1).

%F Sum_{k=0..floor(n/2)} T(n-k, k) = A007070(n).

%F Sum_{k=0..floor(n/2)} (-1)^k*T(n-k, k) = A000302(n).

%F T(n, n) = (-1)^n.

%F T(n, n-1) = 4*A181983(n), n >= 1.

%F T(n, n-2) = (-1)^n*A139278(n-1), n >= 2.

%F T(n, 0) = A001353(n+1). (End)

%e Triangle begins as:

%e 1;

%e 4, -1;

%e 15, -8, 1;

%e 56, -46, 12, -1;

%e 209, -232, 93, -16, 1;

%e 780, -1091, 592, -156, 20, -1;

%e 2911, -4912, 3366, -1200, 235, -24, 1;

%e 10864, -21468, 17784, -8010, 2120, -330, 28, -1;

%p A123966x := proc(n,x)

%p local A,r,c ;

%p A := Matrix(1..n,1..n) ;

%p for r from 1 to n do

%p for c from 1 to n do

%p A[r,c] :=0 ;

%p if r = c then

%p A[r,c] := A[r,c]+4 ;

%p elif abs(r-c)= 1 then

%p A[r,c] := A[r,c]-1 ;

%p end if;

%p end do:

%p end do:

%p (-1)^n*LinearAlgebra[CharacteristicPolynomial](A,x) ;

%p end proc;

%p A123966 := proc(n,k)

%p coeftayl( A123966x(n,x),x=0,k) ;

%p end proc:

%p seq(seq(A123966(n,k),k=0..n),n=0..12) ; # _R. J. Mathar_, Dec 06 2011

%t (* Matrix version*)

%t k = 4;

%t T[n_, m_, d_]:= If[n==m, k, If[n==m-1 || n==m+1, -1, 0]];

%t M[d_]:= Table[T[n, m, d], {n,d}, {m,d}];

%t Table[M[d], {d,10}]

%t Table[Det[M[d]], {d,10}]

%t Table[Det[M[d] - x*IdentityMatrix[d]], {d,10}]

%t Join[{M[1]}, Table[CoefficientList[Det[M[ d] - x*IdentityMatrix[d]], x], {d,10}]]//Flatten

%t (* Recursive Polynomial form*)

%t p[0, x]= 1; p[1, x]= (4-x); p[k_, x_]:= p[k, x]= (4-x)*p[k-1, x] - p[k -2, x];

%t Table[CoefficientList[p[n, x], x], {n, 0, 10}]//Flatten

%t (* Additional program *)

%t Table[CoefficientList[ChebyshevU[n, (4-x)/2], x], {n,0,12}]//Flatten (* _G. C. Greubel_, Aug 20 2023 *)

%o (Magma)

%o m:=12;

%o R<x>:=PowerSeriesRing(Integers(), m+2);

%o A124029:= func< n,k | Coefficient(R!( Evaluate(ChebyshevU(n+1), (4-x)/2) ), k) >;

%o [A124029(n,k): k in [0..n], n in [0..m]]; // _G. C. Greubel_, Aug 20 2023

%o (SageMath)

%o def A124029(n,k): return ( chebyshev_U(n, (4-x)/2) ).series(x, n+2).list()[k]

%o flatten([[A124029(n,k) for k in range(n+1)] for n in range(13)]) # _G. C. Greubel_, Aug 20 2023

%Y Cf. A000302, A001353, A001906, A004254, A007070, A123966.

%Y Cf. A139278, A159764, A181983, A207823 (absolute values).

%K tabl,sign

%O 0,2

%A _Gary W. Adamson_ and _Roger L. Bagula_, Nov 01 2006