login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Simili-primes of order 2.
10

%I #27 Apr 09 2023 02:15:46

%S 3,5,8,13,17,22,28,31,38,43,47,53,59,67,73,77,82,89,97,101,107,113,

%T 121,127,133,139,148,151,158,163,167,179,191,197,203,209,218,227,233,

%U 241,251,257,262,269,274,281,284,293,307,313,317,322,332,343,347,353,361

%N Simili-primes of order 2.

%C Start examining the natural numbers from 2 on and call an "atom" the first integer which cannot be divided by another "atom"; this sieve produces the prime numbers. Here we call "atom" the second integer which cannot be divided by another "atom" - thus the sequence starts with 3 (not 2) and continues with 5 (not 4), then 8 (not 6 or 7), then 13, etc.

%C Terms computed by Mensanator.

%D J.-P. Delahaye, La suite du lézard et autres inventions, Pour la Science, No. 353, 2007.

%H Charles R Greathouse IV, <a href="/A123929/b123929.txt">Table of n, a(n) for n = 1..10000</a> (first 150 terms from a correspondent using the pseudonym "Mensanator")

%H Eric Angelini, <a href="http://www.cetteadressecomportecinquantesignes.com/ThousandZetas.htm">Thousand Zetas</a>

%H Eric Angelini, <a href="/A123929/a123929.html">Thousand Zetas</a> [Cached copy, with permission]

%F Conjecture : a(n) is asymptotic to c*n*log(n) with c about 1.5. - _Benoit Cloitre_, Feb 11 2007

%o (PARI) A123929(n, mode=0/*+1=print, +2=return list*/, N=2, P=List(N+1))={ while(n--, my(k=P[#P]); for(i=1, N, while(k++, for(j=1, #P, k%P[j]||next(2)); break)); bittest(mode, 0)&&print1(k", "); listput(P, k)); if(bittest(mode, 1), Vec(P), P[#P])} \\ _M. F. Hasler_, Dec 24 2013

%o (PARI) v=vectorsmall(10^3); u=List(); v[n=1]=1; while(n<#v*99/100, while(v[n++],); while(v[n++],); listput(u,n); forstep(k=2*n,#v,n,v[k]=1)); Vec(u) \\ _Charles R Greathouse IV_, Jan 02 2014

%Y Cf. A126618-A126624.

%K easy,nonn

%O 1,1

%A _Eric Angelini_ and _Hugo van der Sanden_, Nov 22 2006