login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123908
Number of sequences with terms 1, 2 or 3 summing to n with no three consecutive 1's.
1
1, 1, 2, 3, 6, 10, 17, 30, 52, 90, 156, 271, 470, 815, 1414, 2453, 4255, 7381, 12804, 22211, 38529, 66836, 115940, 201120, 348881, 605201, 1049837, 1821143, 3159121, 5480100, 9506282, 16490465, 28605867, 49622350, 86079461, 149321296
OFFSET
0,3
FORMULA
a(n) = a(n-2) + 2*a(n-3) + 2*a(n-4) + a(n-5).
G.f.: (1 + x + x^2)/(1 - x^2 - 2*x^3 - 2*x^4 - x^5). - Chai Wah Wu, May 28 2016
EXAMPLE
a(4) = 6 as 3 + 1, 1 + 3, 2 + 2, 1 + 1 + 2, 1 + 2 + 1 and 2 + 1 + 1 (but not 1 + 1 + 1 + 1).
MAPLE
a[0]:=1; a[1]:=1; a[2]:=2; a[3]:=3; a[4]:=6; for n from 5 to 45 do a[n] := a[n-2] +2*a[n-3] +2*a[n-4] +a[n-5] end do; seq(a[n], n = 0 .. 40); # modified by G. C. Greubel, Aug 06 2019
seq(coeff(series((1+x+x^2)/(1-x^2-2*x^3-2*x^4-x^5), x, n+1), x, n), n = 0 .. 40); # G. C. Greubel, Aug 06 2019
MATHEMATICA
LinearRecurrence[{0, 1, 2, 2, 1}, {1, 1, 2, 3, 6}, 40] (* G. C. Greubel, Aug 06 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1+x+x^2)/(1-x^2-2*x^3-2*x^4-x^5)) \\ G. C. Greubel, Aug 06 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x+x^2)/(1-x^2-2*x^3-2*x^4-x^5) )); // G. C. Greubel, Aug 06 2019
(Sage) ((1+x+x^2)/(1-x^2-2*x^3-2*x^4-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Aug 06 2019
(GAP) a:=[1, 1, 2, 3, 6];; for n in [6..40] do a[n]:=a[n-2]+2*a[n-3]+ 2*a[n-4]+a[n-5]; od; a; # G. C. Greubel, Aug 06 2019
CROSSREFS
Sequence in context: A245437 A285665 A135431 * A233268 A026397 A193200
KEYWORD
easy,nonn
AUTHOR
Joel B. Lewis, Oct 28 2006
STATUS
approved