Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Sep 08 2022 08:45:28
%S 1,5,25,120,580,2800,13520,65280,315200,1521920,7348480,35481600,
%T 171320320,827207680,3994112000,19285278720,93117562880,449611366400,
%U 2170915717120,10482108334080,50612096204800,244376818155520,1179955657441280,5697329902387200
%N Expansion of g.f.: (1+x+x^2)/(1-4*x-4*x^2).
%H Vincenzo Librandi, <a href="/A123871/b123871.txt">Table of n, a(n) for n = 0..1000</a>
%H A. Burstein and T. Mansour, <a href="http://arXiv.org/abs/math.CO/0112281">Words restricted by 3-letter ...</a>, Annals of Combinatorics 7 (2003), 1-14. arXiv:math.CO/0112281
%H Martin Burtscher, Igor Szczyrba, Rafał Szczyrba, <a href="http://www.emis.de/journals/JIS/VOL18/Szczyrba/sz3.pdf">Analytic Representations of the n-anacci Constants and Generalizations Thereof</a>, Journal of Integer Sequences, Vol. 18 (2015), Article 15.4.5.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (4,4).
%F a(n) = 4*a(n-1) + 4*a(n-2) for n>2. - _Philippe Deléham_, Sep 19 2009
%p seq(coeff(series((1+x+x^2)/(1-4*x-4*x^2), x, n+1), x, n), n = 0..30); # _G. C. Greubel_, Aug 08 2019
%t CoefficientList[Series[(1+x+x^2)/(1-4*x-4*x^2),{x,0,30}],x] (* _Vincenzo Librandi_, Jun 27 2012 *)
%t LinearRecurrence[{4,4},{1,5,25},30] (* _Harvey P. Dale_, Mar 25 2022 *)
%o (Magma) I:=[1, 5, 25]; [n le 3 select I[n] else 4*Self(n-1)+4*Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Jun 27 2012
%o (PARI) my(x='x+O('x^30)); Vec((1+x+x^2)/(1-4*x-4*x^2)) \\ _G. C. Greubel_, Aug 08 2019
%o (Sage)
%o def A123871_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (1+x+x^2)/(1-4*x-4*x^2) ).list()
%o A123871_list(30) # _G. C. Greubel_, Aug 08 2019
%o (GAP) a:=[1,5,25];; for n in [4..30] do a[n]:=4*a[n-1]+4*a[n-2]; od; a; # _G. C. Greubel_, Aug 08 2019
%Y Column 5 in A265584.
%K nonn,easy
%O 0,2
%A _N. J. A. Sloane_, Nov 20 2006