login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Order of minimal triangulation of nonorientable closed surface with n cross-caps (N_n).
1

%I #10 Sep 08 2022 08:45:28

%S 4,6,8,9,9,9,10,10,11,11,12,12,12,13,13,13,14,14,14,15,15,15,15,16,16,

%T 16,16,17,17,17,17,18,18,18,18,18,19,19,19,19,19,20,20,20,20,20,21,21,

%U 21,21,21,21,22,22,22,22,22,22,23,23,23,23,23,23,24,24,24,24,24,24,24,25,25,25

%N Order of minimal triangulation of nonorientable closed surface with n cross-caps (N_n).

%D J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 742.

%H G. C. Greubel, <a href="/A123870/b123870.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = ceiling((7 + sqrt(1+24*g))/2), except a(2) = 8, a(3) = 9.

%t Join[{4,6,8,9}, Table[Ceiling[(7+Sqrt[1+24*n])/2], {n,4,80}]] (* _G. C. Greubel_, Aug 08 2019 *)

%o (PARI) concat([4,6,8,9], vector(80, n, ceil((7 + sqrt(1+24*(n+3)))/2) )) \\ _G. C. Greubel_, Aug 08 2019

%o (Magma) [4,6,8,9] cat [Ceiling((7 + Sqrt(1+24*n))/2): n in [4..80]]; // _G. C. Greubel_, Aug 08 2019

%o (Sage) [4,6,8,9]+[ceil((7 + sqrt(1+24*n))/2) for n in (4..80)] # _G. C. Greubel_, Aug 08 2019

%K nonn

%O 0,1

%A _N. J. A. Sloane_, Nov 19 2006