login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k) = Sum_{j=0..k/2} binomial(n-j-1,k-2*j), read by rows.
4

%I #16 Sep 08 2022 08:45:28

%S 1,0,1,1,1,0,1,2,2,1,1,0,1,3,4,3,2,1,1,0,1,4,7,7,5,3,2,1,1,0,1,5,11,

%T 14,12,8,5,3,2,1,1,0,1,6,16,25,26,20,13,8,5,3,2,1,1,0,1,7,22,41,51,46,

%U 33,21,13,8,5,3,2,1,1,0,1,8,29,63,92,97,79,54,34,21,13,8,5,3,2,1,1,0,1

%N Triangle T(n,k) = Sum_{j=0..k/2} binomial(n-j-1,k-2*j), read by rows.

%C Row sums give: A000225

%H G. C. Greubel, <a href="/A123736/b123736.txt">Rows n = 1..100 of triangle, flattened</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/SteenrodAlgebra.html">Steenrod Algebra</a>

%e The triangle starts in row n=1 with columns 0 <= k < 2*n:

%e 1, 0;

%e 1, 1, 1, 0;

%e 1, 2, 2, 1, 1, 0;

%e 1, 3, 4, 3, 2, 1, 1, 0;

%e 1, 4, 7, 7, 5, 3, 2, 1, 1, 0;

%e 1, 5, 11, 14, 12, 8, 5, 3, 2, 1, 1, 0;

%e 1, 6, 16, 25, 26, 20, 13, 8, 5, 3, 2, 1, 1, 0;

%e 1, 7, 22, 41, 51, 46, 33, 21, 13, 8, 5, 3, 2, 1, 1, 0;

%e 1, 8, 29, 63, 92, 97, 79, 54, 34, 21, 13, 8, 5, 3, 2, 1, 1, 0;

%p seq(seq(sum(binomial(n-j-1, k-2*j), j=0..floor(k/2)), k=0..2*n-1), n=1..10); # _G. C. Greubel_, Sep 05 2019

%t Table[Sum[Binomial[n-j-1, k-2*j], {j,0,Floor[k/2]}], {n, 10}, {k, 0, 2*n-1}]//Flatten (* modified by _G. C. Greubel_, Sep 05 2019 *)

%o (PARI) T(n,k) = sum(j=0, k\2, binomial(n-j-1, k-2*j));

%o for(n=1,10, for(k=0,2*n-1, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Sep 05 2019

%o (Magma) [&+[Binomial(n-j-1, k-2*j): j in [0..Floor(k/2)]]: k in [0..2*n-1], n in [1..10]]; // _G. C. Greubel_, Sep 05 2019

%o (Sage) [[sum(binomial(n-j-1, k-2*j) for j in (0..floor(k/2))) for k in (0..2*n-1)] for n in (1..10)] # _G. C. Greubel_, Sep 05 2019

%o (GAP) Flat(List([1..10], n-> List([0..2*n-1], k-> Sum([0..Int(k/2)], j-> Binomial(n-j-1, k-2*j) )))); # _G. C. Greubel_, Sep 05 2019

%Y Cf. A136431 (antidiagonals), A027926 (row-reversed), A004006 (column m=3)

%K nonn,easy,tabf

%O 1,8

%A _Roger L. Bagula_, Nov 14 2006